IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v3y2021i3d10.1007_s42521-021-00037-3.html
   My bibliography  Save this article

Cryptocurrency volatility markets

Author

Listed:
  • Fabian Woebbeking

    (Goethe University Frankfurt)

Abstract

By computing a volatility index (CVX) from cryptocurrency option prices, we analyze this market’s expectation of future volatility. Our method addresses the challenging liquidity environment of this young asset class and allows us to extract stable market implied volatilities. Two alternative methods are considered to compute volatilities from granular intra-day cryptocurrency options data, which spans over the COVID-19 pandemic period. CVX data therefore capture ‘normal’ market dynamics as well as distress and recovery periods. The methods yield two cointegrated index series, where the corresponding error correction model can be used as an indicator for market implied tail-risk. Comparing our CVX to existing volatility benchmarks for traditional asset classes, such as VIX (equity) or GVX (gold), confirms that cryptocurrency volatility dynamics are often disconnected from traditional markets, yet, share common shocks.

Suggested Citation

  • Fabian Woebbeking, 2021. "Cryptocurrency volatility markets," Digital Finance, Springer, vol. 3(3), pages 273-298, December.
  • Handle: RePEc:spr:digfin:v:3:y:2021:i:3:d:10.1007_s42521-021-00037-3
    DOI: 10.1007/s42521-021-00037-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-021-00037-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-021-00037-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    3. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    4. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    5. Natalie Packham & Fabian Woebbeking, 2018. "A factor-model approach for correlation scenarios and correlation stress-testing," Papers 1807.11381, arXiv.org, revised Jan 2019.
    6. Alessandra Cretarola & Gianna Fig`a-Talamanca, 2017. "A confidence-based model for asset and derivative prices in the BitCoin market," Papers 1702.00215, arXiv.org.
    7. Tim Bollerslev & Viktor Todorov, 2011. "Tails, Fears, and Risk Premia," Journal of Finance, American Finance Association, vol. 66(6), pages 2165-2211, December.
    8. Ciaian, Pavel & Rajcaniova, Miroslava & Kancs, d'Artis, 2018. "Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 173-195.
    9. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    10. Joerg Osterrieder & Julian Lorenz, 2017. "A Statistical Risk Assessment Of Bitcoin And Its Extreme Tail Behavior," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-19, March.
    11. Robert Engle & Stephen Figlewski, 2015. "Modeling the Dynamics of Correlations among Implied Volatilities," Review of Finance, European Finance Association, vol. 19(3), pages 991-1018.
    12. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    13. Trimborn, Simon & Härdle, Wolfgang Karl, 2018. "CRIX an Index for cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
    14. Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2019. "Advanced model calibration on bitcoin options," Digital Finance, Springer, vol. 1(1), pages 117-137, November.
    15. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    16. Platanakis, Emmanouil & Urquhart, Andrew, 2020. "Should investors include Bitcoin in their portfolios? A portfolio theory approach," The British Accounting Review, Elsevier, vol. 52(4).
    17. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    18. Akhtaruzzaman, Md & Sensoy, Ahmet & Corbet, Shaen, 2020. "The influence of Bitcoin on portfolio diversification and design," Finance Research Letters, Elsevier, vol. 37(C).
    19. Elie Bouri & Mahamitra Das & Rangan Gupta & David Roubaud, 2018. "Spillovers between Bitcoin and other assets during bear and bull markets," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5935-5949, November.
    20. Pu, Xiaoling & Zhao, Xinlei, 2012. "Correlation in credit risk changes," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1093-1106.
    21. N. Packham & J. Papenbrock & P. Schwendner & F. Woebbeking, 2017. "Tail-risk protection trading strategies," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 729-744, May.
    22. Peter Carr & Roger Lee, 2009. "Volatility Derivatives," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 319-339, November.
    23. Seungmook Choi & Hongtao Yang, 2019. "Model-Free Implied Volatility under Jump-Diffusion Models," Review of Economics & Finance, Better Advances Press, Canada, vol. 16, pages 1-14, May.
    24. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    25. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    26. Wied, Dominik & Krämer, Walter & Dehling, Herold, 2012. "Testing For A Change In Correlation At An Unknown Point In Time Using An Extended Functional Delta Method," Econometric Theory, Cambridge University Press, vol. 28(3), pages 570-589, June.
    27. Christian Conrad & Anessa Custovic & Eric Ghysels, 2018. "Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    28. Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Hou, Ai Jun & Wang, Weining, 2018. "Pricing Cryptocurrency options: the case of CRIX and Bitcoin," IRTG 1792 Discussion Papers 2018-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    29. Packham, N. & Woebbeking, C.F., 2019. "A factor-model approach for correlation scenarios and correlation stress testing," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 92-103.
    30. Paolo Giudici & Gloria Polinesi, 2021. "Crypto price discovery through correlation networks," Annals of Operations Research, Springer, vol. 299(1), pages 443-457, April.
    31. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    32. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Fei & Wang, Xinyi & Yuan, Yulin, 2022. "The intraday dynamics and intraday price discovery of bitcoin," Research in International Business and Finance, Elsevier, vol. 60(C).
    2. Walid Mensi & Mariya Gubareva & Hee-Un Ko & Xuan Vinh Vo & Sang Hoon Kang, 2023. "Tail spillover effects between cryptocurrencies and uncertainty in the gold, oil, and stock markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
    3. Naeem, Muhammad Abubakr & Lucey, Brian M. & Karim, Sitara & Ghafoor, Abdul, 2022. "Do financial volatilities mitigate the risk of cryptocurrency indexes?," Finance Research Letters, Elsevier, vol. 50(C).
    4. Dmitry V. Boguslavsky & Natalia P. Sharova & Konstantin S. Sharov, 2021. "Cryptocurrency as Epidemiologically Safe Means of Transactions: Diminishing Risk of SARS-CoV-2 Spread," Mathematics, MDPI, vol. 9(24), pages 1-19, December.
    5. Shalini Sharma & Angshul Majumdar & Emilie Chouzenoux & Victor Elvira, 2023. "Deep State-Space Model for Predicting Cryptocurrency Price," Papers 2311.14731, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    3. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    4. Fang, Tong & Su, Zhi & Yin, Libo, 2020. "Economic fundamentals or investor perceptions? The role of uncertainty in predicting long-term cryptocurrency volatility," International Review of Financial Analysis, Elsevier, vol. 71(C).
    5. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    6. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    7. Shi, Yongjing & Tiwari, Aviral Kumar & Gozgor, Giray & Lu, Zhou, 2020. "Correlations among cryptocurrencies: Evidence from multivariate factor stochastic volatility model," Research in International Business and Finance, Elsevier, vol. 53(C).
    8. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    9. Haffar, Adlane & Le Fur, Éric, 2022. "Time-varying dependence of Bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 211-220.
    10. Ladislav Kristoufek, 2022. "On the role of stablecoins in cryptoasset pricing dynamics," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-26, December.
    11. Ahmed H. Elsayed & Giray Gozgor & Chi Keung Marco Lau, 2022. "Causality and dynamic spillovers among cryptocurrencies and currency markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2026-2040, April.
    12. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    13. Vidal-Tomás, David, 2021. "The entry and exit dynamics of the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 58(C).
    14. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    15. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    16. Platanakis, Emmanouil & Urquhart, Andrew, 2020. "Should investors include Bitcoin in their portfolios? A portfolio theory approach," The British Accounting Review, Elsevier, vol. 52(4).
    17. Vidal-Tomás, David & Ibañez, Ana, 2018. "Semi-strong efficiency of Bitcoin," Finance Research Letters, Elsevier, vol. 27(C), pages 259-265.
    18. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    19. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    20. Kurka, Josef, 2019. "Do cryptocurrencies and traditional asset classes influence each other?," Finance Research Letters, Elsevier, vol. 31(C), pages 38-46.

    More about this item

    Keywords

    Cryptocurrency; Blockchain; Bitcoin; Volatility; Derivatives; Options; Liquidity;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • G1 - Financial Economics - - General Financial Markets
    • G2 - Financial Economics - - Financial Institutions and Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:3:y:2021:i:3:d:10.1007_s42521-021-00037-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.