IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.14731.html
   My bibliography  Save this paper

Deep State-Space Model for Predicting Cryptocurrency Price

Author

Listed:
  • Shalini Sharma
  • Angshul Majumdar
  • Emilie Chouzenoux
  • Victor Elvira

Abstract

Our work presents two fundamental contributions. On the application side, we tackle the challenging problem of predicting day-ahead crypto-currency prices. On the methodological side, a new dynamical modeling approach is proposed. Our approach keeps the probabilistic formulation of the state-space model, which provides uncertainty quantification on the estimates, and the function approximation ability of deep neural networks. We call the proposed approach the deep state-space model. The experiments are carried out on established cryptocurrencies (obtained from Yahoo Finance). The goal of the work has been to predict the price for the next day. Benchmarking has been done with both state-of-the-art and classical dynamical modeling techniques. Results show that the proposed approach yields the best overall results in terms of accuracy.

Suggested Citation

  • Shalini Sharma & Angshul Majumdar & Emilie Chouzenoux & Victor Elvira, 2023. "Deep State-Space Model for Predicting Cryptocurrency Price," Papers 2311.14731, arXiv.org.
  • Handle: RePEc:arx:papers:2311.14731
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.14731
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    2. Fabian Woebbeking, 2021. "Cryptocurrency volatility markets," Digital Finance, Springer, vol. 3(3), pages 273-298, December.
    3. Shalini Sharma & Víctor Elvira & Emilie Chouzenoux & Angshul Majumdar, 2021. "Recurrent Dictionary Learning for State-Space Models with an Application in Stock Forecasting," Post-Print hal-03184841, HAL.
    4. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    5. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    6. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    7. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    8. Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2016. "A block coordinate variable metric forward–backward algorithm," Journal of Global Optimization, Springer, vol. 66(3), pages 457-485, November.
    9. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    10. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    11. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiqian Wang & Feng Ma & Elie Bouri & Yangli Guo, 2023. "Which factors drive Bitcoin volatility: Macroeconomic, technical, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 970-988, July.
    2. Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
    3. Klender Cortez & Martha del Pilar Rodríguez-García & Samuel Mongrut, 2020. "Exchange Market Liquidity Prediction with the K-Nearest Neighbor Approach: Crypto vs. Fiat Currencies," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
    4. Fang, Tong & Su, Zhi & Yin, Libo, 2020. "Economic fundamentals or investor perceptions? The role of uncertainty in predicting long-term cryptocurrency volatility," International Review of Financial Analysis, Elsevier, vol. 71(C).
    5. Gerritsen, Dirk F. & Lugtigheid, Rick A.C. & Walther, Thomas, 2022. "Can Bitcoin Investors Profit from Predictions by Crypto Experts?," Finance Research Letters, Elsevier, vol. 46(PA).
    6. Demir, Ender & Simonyan, Serdar & García-Gómez, Conrado-Diego & Lau, Chi Keung Marco, 2021. "The asymmetric effect of bitcoin on altcoins: evidence from the nonlinear autoregressive distributed lag (NARDL) model," Finance Research Letters, Elsevier, vol. 40(C).
    7. Skander Slim & Ibrahim Tabche & Yosra Koubaa & Mohamed Osman & Andreas Karathanasopoulos, 2023. "Forecasting realized volatility of Bitcoin: The informative role of price duration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1909-1929, November.
    8. Clark, Ephraim & Lahiani, Amine & Mefteh-Wali, Salma, 2023. "Cryptocurrency return predictability: What is the role of the environment?," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    9. Qian, Lihua & Wang, Jiqian & Ma, Feng & Li, Ziyang, 2022. "Bitcoin volatility predictability–The role of jumps and regimes," Finance Research Letters, Elsevier, vol. 47(PB).
    10. Xia, Yufei & Sang, Chong & He, Lingyun & Wang, Ziyao, 2023. "The role of uncertainty index in forecasting volatility of Bitcoin: Fresh evidence from GARCH-MIDAS approach," Finance Research Letters, Elsevier, vol. 52(C).
    11. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Do Cryptocurrency Prices Camouflage Latent Economic Effects? A Bayesian Hidden Markov Approach," Future Internet, MDPI, vol. 12(3), pages 1-19, March.
    12. Wu, Xinyu & Yin, Xuebao & Umar, Zaghum & Iqbal, Najaf, 2023. "Volatility forecasting in the Bitcoin market: A new proposed measure based on the VS-ACARR approach," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    13. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    14. Ioannis Papageorgiou & Ioannis Kontoyiannis, 2023. "The Bayesian Context Trees State Space Model for time series modelling and forecasting," Papers 2308.00913, arXiv.org, revised Oct 2023.
    15. Assaf, Ata & Bilgin, Mehmet Huseyin & Demir, Ender, 2022. "Using transfer entropy to measure information flows between cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    16. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    17. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    18. Bournakis, Ioannis & Tsionas, Mike G., 2023. "A Non-Parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," MPRA Paper 118100, University Library of Munich, Germany.
    19. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    20. Manuel Arellano & Richard Blundell & Stéphane Bonhomme & Jack Light, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Post-Print hal-04536563, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.14731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.