IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v17y2017i5p729-744.html
   My bibliography  Save this article

Tail-risk protection trading strategies

Author

Listed:
  • N. Packham
  • J. Papenbrock
  • P. Schwendner
  • F. Woebbeking

Abstract

Starting from well-known empirical stylized facts of financial time series, we develop dynamic portfolio protection trading strategies based on econometric methods. As a criterion for riskiness, we consider the evolution of the value-at-risk spread from a GARCH model with normal innovations relative to a GARCH model with generalized innovations. These generalized innovations may for example follow a Student t, a generalized hyperbolic, an alpha-stable or a Generalized Pareto distribution (GPD). Our results indicate that the GPD distribution provides the strongest signals for avoiding tail risks. This is not surprising as the GPD distribution arises as a limit of tail behaviour in extreme value theory and therefore is especially suited to deal with tail risks. Out-of-sample backtests on 11 years of DAX futures data, indicate that the dynamic tail-risk protection strategy effectively reduces the tail risk while outperforming traditional portfolio protection strategies. The results are further validated by calculating the statistical significance of the results obtained using bootstrap methods. A number of robustness tests including application to other assets further underline the effectiveness of the strategy. Finally, by empirically testing for second-order stochastic dominance, we find that risk averse investors would be willing to pay a positive premium to move from a static buy-and-hold investment in the DAX future to the tail-risk protection strategy.

Suggested Citation

  • N. Packham & J. Papenbrock & P. Schwendner & F. Woebbeking, 2017. "Tail-risk protection trading strategies," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 729-744, May.
  • Handle: RePEc:taf:quantf:v:17:y:2017:i:5:p:729-744
    DOI: 10.1080/14697688.2016.1249512
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2016.1249512
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2016.1249512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Spilak & Wolfgang Karl Hardle, 2022. "Risk budget portfolios with convex Non-negative Matrix Factorization," Papers 2204.02757, arXiv.org, revised Jun 2023.
    2. Bruno Spilak & Wolfgang Karl Härdle, 2022. "Tail-Risk Protection: Machine Learning Meets Modern Econometrics," Springer Books, in: Cheng-Few Lee & Alice C. Lee (ed.), Encyclopedia of Finance, edition 0, chapter 92, pages 2177-2211, Springer.
    3. Fabian Woebbeking, 2021. "Cryptocurrency volatility markets," Digital Finance, Springer, vol. 3(3), pages 273-298, December.
    4. Bruno Spilak & Wolfgang Karl Hardle, 2020. "Tail-risk protection: Machine Learning meets modern Econometrics," Papers 2010.03315, arXiv.org, revised Aug 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:17:y:2017:i:5:p:729-744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.