IDEAS home Printed from
   My bibliography  Save this article

Convex combinations of long memory estimates from different sampling rates


  • Leonardo Souza


  • Jeremy Smith


  • Reinaldo Souza


Convex combinations of long memory estimates using the same data observed at different sampling rates can decrease the standard deviation of the estimates, at the cost of inducing a slight bias. The convex combination of such estimates requires a preliminary correction for the bias observed at lower sampling rates, reported by Souza and Smith (2002). Through Monte Carlo simulations, we investigate the bias and the standard deviation of the combined estimates, as well as the root mean squared error (RMSE), which takes both into account. While comparing the results of standard methods and their combined versions, the latter achieve lower RMSE, for the two semi-parametric estimators under study (by about 30% on average for ARFIMA(0,d,0) series).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Leonardo Souza & Jeremy Smith & Reinaldo Souza, 2006. "Convex combinations of long memory estimates from different sampling rates," Computational Statistics, Springer, vol. 21(3), pages 399-413, December.
  • Handle: RePEc:spr:compst:v:21:y:2006:i:3:p:399-413
    DOI: 10.1007/s00180-006-0002-3

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Bisaglia, Luisa & Guegan, Dominique, 1998. "A comparison of techniques of estimation in long-memory processes," Computational Statistics & Data Analysis, Elsevier, vol. 27(1), pages 61-81, March.
    2. Andersson, Michael K., 1998. "Do Long-Memory Models Have Long Memory?," SSE/EFI Working Paper Series in Economics and Finance 227, Stockholm School of Economics, revised 16 Mar 2000.
    3. Smith, Jeremy & Taylor, Nick & Yadav, Sanjay, 1995. "Comparing the Bias and Misspecification in Arfima Models," The Warwick Economics Research Paper Series (TWERPS) 442, University of Warwick, Department of Economics.
    4. Souza, Leonardo da Rocha de, 2003. "The aliasing effect, the Fejer Kernel and temporally aggregated long memory processes," FGV/EPGE Economics Working Papers (Ensaios Economicos da EPGE) 470, FGV/EPGE - Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
    5. Leonardo Rocha Souza, 2007. "Temporal Aggregation and Bandwidth selection in estimating long memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 701-722, September.
    6. Chambers, Marcus J, 1998. "Long Memory and Aggregation in Macroeconomic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1053-1072, November.
    7. Andersson, Michael K., 2000. "Do long-memory models have long memory?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 121-124.
    8. Man, K. S., 2003. "Long memory time series and short term forecasts," International Journal of Forecasting, Elsevier, vol. 19(3), pages 477-491.
    9. Souza, Leonardo R. & Smith, Jeremy, 2004. "Effects of temporal aggregation on estimates and forecasts of fractionally integrated processes: a Monte-Carlo study," International Journal of Forecasting, Elsevier, vol. 20(3), pages 487-502.
    10. Souza, Leonardo R. & Smith, Jeremy, 2002. "Bias in the memory parameter for different sampling rates," International Journal of Forecasting, Elsevier, vol. 18(2), pages 299-313.
    11. R. Tschernig, 1994. "Long Memory in Foreign Exchange Rates Revisited," SFB 373 Discussion Papers 1994,46, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Monteiro, Paulo Klinger, 2006. "The set of equilibria of first-price auctions," Journal of Mathematical Economics, Elsevier, vol. 42(3), pages 364-372, June.
    2. Cavalcanti Ferreira, Pedro & Facchini, Giovanni, 2005. "Trade liberalization and industrial concentration: Evidence from Brazil," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(2-3), pages 432-446, May.

    More about this item


    Convex combination; Long memory; Sampling rate;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:21:y:2006:i:3:p:399-413. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.