IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v11y2014i1p25-44.html
   My bibliography  Save this article

Energy efficiency and risk management in public buildings: strategic model for robust planning

Author

Listed:
  • Emilio Cano
  • Javier Moguerza
  • Tatiana Ermolieva
  • Yuri Ermoliev

Abstract

Due to deregulations of the energy sector and the setting of targets such as the 20/20/20 in the EU, operators of public buildings are now more exposed to instantaneous (short-term) market conditions. On the other hand, they have gained the opportunity to play a more active role in securing long-term supply, managing demand, and hedging against risk while improving existing buildings’ infrastructures. Therefore, there are incentives for the operators to develop and use a Decision Support System to manage their energy sub-systems in a more robust energy-efficient and cost-effective manner. In this paper, a two-stage stochastic model is proposed, where some decisions (so-called first-stage decisions) regarding investments in new energy technologies have to be taken before uncertainties are resolved, and some others (so-called second-stage decisions) on how to use the installed technologies will be taken once values for uncertain parameters become known, thereby providing a trade-off between long- and short-term decisions. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Emilio Cano & Javier Moguerza & Tatiana Ermolieva & Yuri Ermoliev, 2014. "Energy efficiency and risk management in public buildings: strategic model for robust planning," Computational Management Science, Springer, vol. 11(1), pages 25-44, January.
  • Handle: RePEc:spr:comgts:v:11:y:2014:i:1:p:25-44
    DOI: 10.1007/s10287-013-0177-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-013-0177-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-013-0177-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henning, Dag, 1997. "MODEST—An energy-system optimisation model applicable to local utilities and countries," Energy, Elsevier, vol. 22(12), pages 1135-1150.
    2. Andrei Gritsevskyi & Yuri Ermoliev, 2012. "Modeling Technological Change Under Increasing Returns and Uncertainty," Lecture Notes in Economics and Mathematical Systems, in: Yuri Ermoliev & Marek Makowski & Kurt Marti (ed.), Managing Safety of Heterogeneous Systems, edition 127, pages 109-136, Springer.
    3. Yuri Ermoliev & Marek Makowski & Kurt Marti, 2012. "Robust Management of Heterogeneous Systems under Uncertainties," Lecture Notes in Economics and Mathematical Systems, in: Yuri Ermoliev & Marek Makowski & Kurt Marti (ed.), Managing Safety of Heterogeneous Systems, edition 127, pages 1-16, Springer.
    4. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    5. Gritsevskyi, Andrii & Nakicenovi, Nebojsa, 2000. "Modeling uncertainty of induced technological change," Energy Policy, Elsevier, vol. 28(13), pages 907-921, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bei, Xiaoqiang & Zhu, Xiaoyan & Coit, David W., 2019. "A risk-averse stochastic program for integrated system design and preventive maintenance planning," European Journal of Operational Research, Elsevier, vol. 276(2), pages 536-548.
    2. Emilio L. Cano & Javier M. Moguerza & Tatiana Ermolieva & Yurii Yermoliev, 2017. "A strategic decision support system framework for energy-efficient technology investments," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 249-270, July.
    3. Tatiana Ermolieva & Petr Havlik & Yuri Ermoliev & Nikolay Khabarov & Michael Obersteiner, 2021. "Robust Management of Systemic Risks and Food-Water-Energy-Environmental Security: Two-Stage Strategic-Adaptive GLOBIOM Model," Sustainability, MDPI, vol. 13(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio L. Cano & Javier M. Moguerza & Tatiana Ermolieva & Yurii Yermoliev, 2017. "A strategic decision support system framework for energy-efficient technology investments," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 249-270, July.
    2. Tatiana Ermolieva & Petr Havlik & Yuri Ermoliev & Nikolay Khabarov & Michael Obersteiner, 2021. "Robust Management of Systemic Risks and Food-Water-Energy-Environmental Security: Two-Stage Strategic-Adaptive GLOBIOM Model," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    3. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    4. Brian C. O'Neill & Paul Crutzen & Arnulf Gr�bler & Minh Ha Duong & Klaus Keller & Charles Kolstad & Jonathan Koomey & Andreas Lange & Michael Obersteiner & Michael Oppenheimer & William Pepper & Warre, 2006. "Learning and climate change," Climate Policy, Taylor & Francis Journals, vol. 6(5), pages 585-589, September.
      • Brian C. O'Neill & Paul Crutzen & Arnulf Grübler & Minh Ha-Duong & Klaus Keller & Charles Kolstad & Jonathan Koomey & Andreas Lange & Michael Obersteiner & Michael Oppenheimer & William Pepper & Warre, 2006. "Learning and climate change," Post-Print halshs-00134718, HAL.
    5. Valentina Bosetti & Laurent Gilotte, 2005. "Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?," Working Papers 2005.86, Fondazione Eni Enrico Mattei.
    6. Venter, Philip van Zyl & Terblanche, Stephanus Esias & van Eldik, Martin, 2018. "Turbine investment optimisation for energy recovery plants by utilising historic steam flow profiles," Energy, Elsevier, vol. 155(C), pages 668-677.
    7. Eriksson, Marcus & Vamling, Lennart, 2007. "Future use of heat pumps in Swedish district heating systems: Short- and long-term impact of policy instruments and planned investments," Applied Energy, Elsevier, vol. 84(12), pages 1240-1257, December.
    8. Pineau, Pierre-Olivier & Rasata, Hasina & Zaccour, Georges, 2011. "Impact of some parameters on investments in oligopolistic electricity markets," European Journal of Operational Research, Elsevier, vol. 213(1), pages 180-195, August.
    9. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    10. Ramírez-Sagner, Gonzalo & Muñoz, Francisco D., 2019. "The effect of head-sensitive hydropower approximations on investments and operations in planning models for policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 38-47.
    11. Aurélie Méjean & Franck Lecocq & Yacob Mulugetta, 2015. "Equity, burden sharing and development pathways: reframing international climate negotiations," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 15(4), pages 387-402, November.
    12. Inzunza, Andrés & Muñoz, Francisco D. & Moreno, Rodrigo, 2021. "Measuring the effects of environmental policies on electricity markets risk," Energy Economics, Elsevier, vol. 102(C).
    13. Avinash Vijay & Adam Hawkes, 2017. "The Techno-Economics of Small-Scale Residential Heating in Low Carbon Futures," Energies, MDPI, vol. 10(11), pages 1-23, November.
    14. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
    15. Hach, Daniel & Chyong, Chi Kong & Spinler, Stefan, 2016. "Capacity market design options: A dynamic capacity investment model and a GB case study," European Journal of Operational Research, Elsevier, vol. 249(2), pages 691-705.
    16. Woo, C.K. & Liu, Y. & Zarnikau, J. & Shiu, A. & Luo, X. & Kahrl, F., 2018. "Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016," Applied Energy, Elsevier, vol. 222(C), pages 460-474.
    17. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    18. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2014. "Short-term electricity planning with increase wind capacity," Energy, Elsevier, vol. 69(C), pages 12-22.
    19. Farrell, Alexander E. & Keith, David W. & Corbett, James J., 2003. "A strategy for introducing hydrogen into transportation," Energy Policy, Elsevier, vol. 31(13), pages 1357-1367, October.
    20. Hunter, Kevin & Sreepathi, Sarat & DeCarolis, Joseph F., 2013. "Modeling for insight using Tools for Energy Model Optimization and Analysis (Temoa)," Energy Economics, Elsevier, vol. 40(C), pages 339-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:11:y:2014:i:1:p:25-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.