IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v11y2014i1p25-44.html
   My bibliography  Save this article

Energy efficiency and risk management in public buildings: strategic model for robust planning

Author

Listed:
  • Emilio Cano
  • Javier Moguerza
  • Tatiana Ermolieva
  • Yuri Ermoliev

Abstract

Due to deregulations of the energy sector and the setting of targets such as the 20/20/20 in the EU, operators of public buildings are now more exposed to instantaneous (short-term) market conditions. On the other hand, they have gained the opportunity to play a more active role in securing long-term supply, managing demand, and hedging against risk while improving existing buildings’ infrastructures. Therefore, there are incentives for the operators to develop and use a Decision Support System to manage their energy sub-systems in a more robust energy-efficient and cost-effective manner. In this paper, a two-stage stochastic model is proposed, where some decisions (so-called first-stage decisions) regarding investments in new energy technologies have to be taken before uncertainties are resolved, and some others (so-called second-stage decisions) on how to use the installed technologies will be taken once values for uncertain parameters become known, thereby providing a trade-off between long- and short-term decisions. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Emilio Cano & Javier Moguerza & Tatiana Ermolieva & Yuri Ermoliev, 2014. "Energy efficiency and risk management in public buildings: strategic model for robust planning," Computational Management Science, Springer, vol. 11(1), pages 25-44, January.
  • Handle: RePEc:spr:comgts:v:11:y:2014:i:1:p:25-44
    DOI: 10.1007/s10287-013-0177-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-013-0177-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-013-0177-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Henning, Dag, 1997. "MODEST—An energy-system optimisation model applicable to local utilities and countries," Energy, Elsevier, vol. 22(12), pages 1135-1150.
    2. Andrei Gritsevskyi & Yuri Ermoliev, 2012. "Modeling Technological Change Under Increasing Returns and Uncertainty," Lecture Notes in Economics and Mathematical Systems, in: Yuri Ermoliev & Marek Makowski & Kurt Marti (ed.), Managing Safety of Heterogeneous Systems, edition 127, pages 109-136, Springer.
    3. Yuri Ermoliev & Marek Makowski & Kurt Marti, 2012. "Robust Management of Heterogeneous Systems under Uncertainties," Lecture Notes in Economics and Mathematical Systems, in: Yuri Ermoliev & Marek Makowski & Kurt Marti (ed.), Managing Safety of Heterogeneous Systems, edition 127, pages 1-16, Springer.
    4. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    5. Gritsevskyi, Andrii & Nakicenovi, Nebojsa, 2000. "Modeling uncertainty of induced technological change," Energy Policy, Elsevier, vol. 28(13), pages 907-921, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bei, Xiaoqiang & Zhu, Xiaoyan & Coit, David W., 2019. "A risk-averse stochastic program for integrated system design and preventive maintenance planning," European Journal of Operational Research, Elsevier, vol. 276(2), pages 536-548.
    2. Emilio L. Cano & Javier M. Moguerza & Tatiana Ermolieva & Yurii Yermoliev, 2017. "A strategic decision support system framework for energy-efficient technology investments," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 249-270, July.
    3. Tatiana Ermolieva & Petr Havlik & Yuri Ermoliev & Nikolay Khabarov & Michael Obersteiner, 2021. "Robust Management of Systemic Risks and Food-Water-Energy-Environmental Security: Two-Stage Strategic-Adaptive GLOBIOM Model," Sustainability, MDPI, vol. 13(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio L. Cano & Javier M. Moguerza & Tatiana Ermolieva & Yurii Yermoliev, 2017. "A strategic decision support system framework for energy-efficient technology investments," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 249-270, July.
    2. Tatiana Ermolieva & Petr Havlik & Yuri Ermoliev & Nikolay Khabarov & Michael Obersteiner, 2021. "Robust Management of Systemic Risks and Food-Water-Energy-Environmental Security: Two-Stage Strategic-Adaptive GLOBIOM Model," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    3. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    4. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    5. C. K. Woo & K. H. Cao & H. Qi & J. Zarnikau & R. Li, 2024. "Price responsiveness of solar and wind capacity demands," Post-Print hal-04597188, HAL.
    6. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    7. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    8. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    9. Brian C. O'Neill & Paul Crutzen & Arnulf Gr�bler & Minh Ha Duong & Klaus Keller & Charles Kolstad & Jonathan Koomey & Andreas Lange & Michael Obersteiner & Michael Oppenheimer & William Pepper & Warre, 2006. "Learning and climate change," Climate Policy, Taylor & Francis Journals, vol. 6(5), pages 585-589, September.
      • Brian C. O'Neill & Paul Crutzen & Arnulf Grübler & Minh Ha-Duong & Klaus Keller & Charles Kolstad & Jonathan Koomey & Andreas Lange & Michael Obersteiner & Michael Oppenheimer & William Pepper & Warre, 2006. "Learning and climate change," Post-Print halshs-00134718, HAL.
    10. Valentina Bosetti & Laurent Gilotte, 2005. "Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?," Working Papers 2005.86, Fondazione Eni Enrico Mattei.
    11. Venter, Philip van Zyl & Terblanche, Stephanus Esias & van Eldik, Martin, 2018. "Turbine investment optimisation for energy recovery plants by utilising historic steam flow profiles," Energy, Elsevier, vol. 155(C), pages 668-677.
    12. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    13. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    14. Pieper, Henrik & Ommen, Torben & Elmegaard, Brian & Brix Markussen, Wiebke, 2019. "Assessment of a combination of three heat sources for heat pumps to supply district heating," Energy, Elsevier, vol. 176(C), pages 156-170.
    15. Eriksson, Marcus & Vamling, Lennart, 2007. "Future use of heat pumps in Swedish district heating systems: Short- and long-term impact of policy instruments and planned investments," Applied Energy, Elsevier, vol. 84(12), pages 1240-1257, December.
    16. Cuenca, Juan J. & Daly, Hannah E. & Hayes, Barry P., 2023. "Sharing the grid: The key to equitable access for small-scale energy generation," Applied Energy, Elsevier, vol. 349(C).
    17. Pineau, Pierre-Olivier & Rasata, Hasina & Zaccour, Georges, 2011. "Impact of some parameters on investments in oligopolistic electricity markets," European Journal of Operational Research, Elsevier, vol. 213(1), pages 180-195, August.
    18. Afful-Dadzie, Anthony & Afful-Dadzie, Eric & Awudu, Iddrisu & Banuro, Joseph Kwaku, 2017. "Power generation capacity planning under budget constraint in developing countries," Applied Energy, Elsevier, vol. 188(C), pages 71-82.
    19. Kemp-Benedict, Eric, 2014. "Shifting to a Green Economy: Lock-in, Path Dependence, and Policy Options," MPRA Paper 60175, University Library of Munich, Germany.
    20. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:11:y:2014:i:1:p:25-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.