IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v160y2020i3d10.1007_s10584-019-02643-y.html
   My bibliography  Save this article

Sensitivity of future climate change and uncertainty over India to performance-based model weighting

Author

Listed:
  • Ram Singh

    (Centre for Atmospheric Sciences, Indian Institute of Technology Delhi)

  • K. AchutaRao

    (Centre for Atmospheric Sciences, Indian Institute of Technology Delhi)

Abstract

Multi-model ensembles are used to understand present and future climate change. Differences between individual model projections of future climates result in uncertainty in what we can expect in the future. Typically, models from such ensembles are treated equally but two reasons have been used to move away from this model democracy. The first reason is that models may not be equally skillful and therefore, their projections would need to be weighted differently based on model performance over the observed period. A second reason has to do with whether models are truly independent, that is they do not share components that can result in simulations that are closer, giving the impression of a lower uncertainty. This study examines the sensitivity of mean change and uncertainty in projected future surface air temperature and precipitation over India to weighting strategies based only on model performance but not their independence. It is found that some model performance metrics do not provide any value, as most models tend to have uniformly high or uniformly low weights. Considering multiple dimensions of model performance that add value in distinguishing between models is important for model weighting to be useful. Using multiple observational datasets for the two variables analysed, it is found that observational uncertainty can affect the weighted future change as much as the choice of weighting schemes over some regions. Careful selection of model performance metrics and reliable observations are necessary for a more robust estimate of future change and associated uncertainty.

Suggested Citation

  • Ram Singh & K. AchutaRao, 2020. "Sensitivity of future climate change and uncertainty over India to performance-based model weighting," Climatic Change, Springer, vol. 160(3), pages 385-406, June.
  • Handle: RePEc:spr:climat:v:160:y:2020:i:3:d:10.1007_s10584-019-02643-y
    DOI: 10.1007/s10584-019-02643-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02643-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02643-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew G. Turner & H. Annamalai, 2012. "Climate change and the South Asian summer monsoon," Nature Climate Change, Nature, vol. 2(8), pages 587-595, August.
    2. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    3. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Leal Filho & Robert Stojanov & Franziska Wolf & Newton R. Matandirotya & Christian Ploberger & Desalegn Y. Ayal & Fardous Mohammad Safiul Azam & Tareq Mohammed Ali AL-Ahdal & Rebecca Sarku & No, 2022. "Assessing Uncertainties in Climate Change Adaptation and Land Management," Land, MDPI, vol. 11(12), pages 1-15, December.
    2. Marina Baldissera Pacchetti & Suraje Dessai & David A. Stainforth & Seamus Bradley, 2021. "Assessing the quality of state-of-the-art regional climate information: the case of the UK Climate Projections 2018," Climatic Change, Springer, vol. 168(1), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    2. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    3. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    4. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Working Papers 2019-2, Brown University, Department of Economics.
    5. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.
    6. Andrea Karin Barrueto & Juerg Merz & Nicole Clot & Thomas Hammer, 2017. "Climate Changes and Their Impact on Agricultural Market Systems: Examples from Nepal," Sustainability, MDPI, vol. 9(12), pages 1-16, November.
    7. Farahmand, Shekoofeh & Hilmi, Nathalie & Cinar, Mine & Safa, Alain & Lam, Vicky W.Y. & Djoundourian, Salpie & Shahin, Wassim & Ben Lamine, Emna & Schickele, Alexandre & Guidetti, Paolo & Allemand, Den, 2023. "Climate change impacts on Mediterranean fisheries: A sensitivity and vulnerability analysis for main commercial species," Ecological Economics, Elsevier, vol. 211(C).
    8. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    9. Jose A. Marengo & Ana Paula M. A. Cunha & Carlos A. Nobre & Germano G. Ribeiro Neto & Antonio R. Magalhaes & Roger R. Torres & Gilvan Sampaio & Felipe Alexandre & Lincoln M. Alves & Luz A. Cuartas & K, 2020. "Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2589-2611, September.
    10. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    11. Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
    12. Yann Chavaillaz & Sylvie Joussaume & Amaury Dehecq & Pascale Braconnot & Robert Vautard, 2016. "Investigating the pace of temperature change and its implications over the twenty-first century," Climatic Change, Springer, vol. 137(1), pages 187-200, July.
    13. Jia-Min Jiang & Lei Jin & Lei Huang & Wen-Ting Wang, 2022. "The Future Climate under Different CO 2 Emission Scenarios Significantly Influences the Potential Distribution of Achnatherum inebrians in China," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    14. Gaudard, Ludovic, 2015. "Pumped-storage project: A short to long term investment analysis including climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 91-99.
    15. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Working Papers 2019-2, Brown University, Department of Economics.
    16. Isaac Kwesi Nooni & Daniel Fiifi T. Hagan & Guojie Wang & Waheed Ullah & Jiao Lu & Shijie Li & Mawuli Dzakpasu & Nana Agyemang Prempeh & Kenny T. C. Lim Kam Sian, 2021. "Future Changes in Simulated Evapotranspiration across Continental Africa Based on CMIP6 CNRM-CM6," IJERPH, MDPI, vol. 18(13), pages 1-17, June.
    17. Nie, Yaoyu & Cai, Wenjia & Wang, Can & Huang, Guorui & Ding, Qun & Yu, Le & Li, Haoran & Ji, Duoying, 2019. "Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China – The case of sweet sorghum," Applied Energy, Elsevier, vol. 239(C), pages 395-407.
    18. Wang, Xiaowen & Li, Liang & Ding, Yibo & Xu, Jiatun & Wang, Yunfei & Zhu, Yan & Wang, Xiaoyun & Cai, Huanjie, 2021. "Adaptation of winter wheat varieties and irrigation patterns under future climate change conditions in Northern China," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.
    20. Abel Chemura & Dumisani Kutywayo & Danisile Hikwa & Christoph Gornott, 2022. "Climate change and cocoyam (Colocasia esculenta (L.) Schott) production: assessing impacts and potential adaptation strategies in Zimbabwe," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:160:y:2020:i:3:d:10.1007_s10584-019-02643-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.