IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v149y2018i2d10.1007_s10584-018-2227-x.html
   My bibliography  Save this article

Variability in precipitation seasonality limits grassland biomass responses to rising CO2: historical and projected climate analyses

Author

Listed:
  • Mark J. Hovenden

    (University of Tasmania)

  • Paul C. D. Newton

    (AgResearch)

Abstract

Correctly estimating the effect of elevated CO2 (eCO2) on biomass production is paramount for accurately projecting agricultural productivity, global carbon balances and climate changes. Plant physiology suggests that eCO2 should result in a strongly positive CO2 fertilisation effect (CFE) via positive effects on photosynthesis and water use efficiency. However, the CFE in CO2 experiments is often constrained because of other factors of which rainfall pattern is particularly important. Here, we apply a generally applicable, empirically derived relationship between the CFE and an index of seasonal rainfall balance (SRB), to identify how historical and projected future rainfall patterns modify the CFE using 25 native grassland sites in south-eastern (SE) Australia as a test case. We found that historical and projected rainfall produced SRBs that varied widely from year-to-year resulting in a CFE that was only positive in about 40% of years, with no or even negative biomass responses in the remainder of years; a finding that is in marked contrast to other studies that have not taken account of relationships between rainfall seasonality and plant responses to CO2. The dependence of the CFE on SRB also means that using the CFE from a specific eCO2 experiment can be misleading as the result will be heavily influenced by the SRB during the period of experimentation but this problem can be avoided by using a robust general relationship of the kind used in this study. Generalisations of grassland biomass responses to the rising CO2 concentration are contextual in terms of the variability in precipitation seasonality; as such, this provides a new lens by which to view aboveground responses to the rising CO2 concentration and fosters a novel approach for cross-site comparisons among experiments.

Suggested Citation

  • Mark J. Hovenden & Paul C. D. Newton, 2018. "Variability in precipitation seasonality limits grassland biomass responses to rising CO2: historical and projected climate analyses," Climatic Change, Springer, vol. 149(2), pages 219-231, July.
  • Handle: RePEc:spr:climat:v:149:y:2018:i:2:d:10.1007_s10584-018-2227-x
    DOI: 10.1007/s10584-018-2227-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2227-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2227-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark J. Hovenden & Paul C. D. Newton & Karen E. Wills, 2014. "Seasonal not annual rainfall determines grassland biomass response to carbon dioxide," Nature, Nature, vol. 511(7511), pages 583-586, July.
    2. Finger, Robert & Lazzarotto, Patrick & Calanca, Pierluigi, 2010. "Bio-economic assessment of climate change impacts on managed grassland production," Agricultural Systems, Elsevier, vol. 103(9), pages 666-674, November.
    3. Tsang, Eric W. K., 2014. "Old and New," Management and Organization Review, Cambridge University Press, vol. 10(03), pages 390-390, November.
    4. Lieffering, Mark & Newton, Paul C.D. & Vibart, Ronaldo & Li, Frank Y., 2016. "Exploring climate change impacts and adaptations of extensive pastoral agriculture systems by combining biophysical simulation and farm system models," Agricultural Systems, Elsevier, vol. 144(C), pages 77-86.
    5. Peter B. Reich & Sarah E. Hobbie, 2013. "Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass," Nature Climate Change, Nature, vol. 3(3), pages 278-282, March.
    6. Detlef Vuuren & Timothy Carter, 2014. "Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old," Climatic Change, Springer, vol. 122(3), pages 415-429, February.
    7. J. Adam Langley & J. Patrick Megonigal, 2010. "Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift," Nature, Nature, vol. 466(7302), pages 96-99, July.
    8. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spalding-Fecher, Randall. & Senatla, Mamahloko & Yamba, Francis & Lukwesa, Biness & Himunzowa, Grayson & Heaps, Charles & Chapman, Arthur & Mahumane, Gilberto & Tembo, Bernard & Nyambe, Imasiku, 2017. "Electricity supply and demand scenarios for the Southern African power pool," Energy Policy, Elsevier, vol. 101(C), pages 403-414.
    2. Titta Majasalmi & Micky Allen & Clara Antón-Fernández & Rasmus Astrup & Ryan M. Bright, 2020. "A simple grid-based framework for simulating forest structural trajectories linked to transient forest management scenarios in Fennoscandia," Climatic Change, Springer, vol. 162(4), pages 2139-2155, October.
    3. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    4. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.
    5. Nair, Mahendhiran & Arvin, Mak B. & Pradhan, Rudra P. & Bahmani, Sahar, 2021. "Is higher economic growth possible through better institutional quality and a lower carbon footprint? Evidence from developing countries," Renewable Energy, Elsevier, vol. 167(C), pages 132-145.
    6. Zimmermann, Andrea & Webber, Heidi & Zhao, Gang & Ewert, Frank & Kros, Johannes & Wolf, Joost & Britz, Wolfgang & de Vries, Wim, 2017. "Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements," Agricultural Systems, Elsevier, vol. 157(C), pages 81-92.
    7. Xiao-Chen Yuan & Xun Sun & Upmanu Lall & Zhi-Fu Mi & Jun He & Yi-Ming Wei, 2016. "China’s socioeconomic risk from extreme events in a changing climate: a hierarchical Bayesian model," Climatic Change, Springer, vol. 139(2), pages 169-181, November.
    8. Siatwiinda M. Siatwiinda & Iwan Supit & Bert van Hove & Olusegun Yerokun & Gerard H. Ros & Wim de Vries, 2021. "Climate change impacts on rainfed maize yields in Zambia under conventional and optimized crop management," Climatic Change, Springer, vol. 167(3), pages 1-23, August.
    9. P. Harrison & R. Dunford & C. Savin & M. Rounsevell & I. Holman & A. Kebede & B. Stuch, 2015. "Cross-sectoral impacts of climate change and socio-economic change for multiple, European land- and water-based sectors," Climatic Change, Springer, vol. 128(3), pages 279-292, February.
    10. Wolf, Joost & Kanellopoulos, Argyris & Kros, Johannes & Webber, Heidi & Zhao, Gang & Britz, Wolfgang & Reinds, Gert Jan & Ewert, Frank & de Vries, Wim, 2015. "Combined analysis of climate, technological and price changes on future arable farming systems in Europe," Agricultural Systems, Elsevier, vol. 140(C), pages 56-73.
    11. Livia Rasche & Uwe A. Schneider & Martha Bolívar Lobato & Ruth Sos Del Diego & Tobias Stacke, 2018. "Benefits of Coordinated Water Resource System Planning in the Cauca-Magdalena River Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-27, January.
    12. Nir Y. Krakauer, 2014. "Economic Growth Assumptions in Climate and Energy Policy," Sustainability, MDPI, vol. 6(3), pages 1-14, March.
    13. Arrieta, E.M. & González, A.D., 2018. "Impact of current, National Dietary Guidelines and alternative diets on greenhouse gas emissions in Argentina," Food Policy, Elsevier, vol. 79(C), pages 58-66.
    14. Afshin Ghahramani & S. Mark Howden & Agustin del Prado & Dean T. Thomas & Andrew D. Moore & Boyu Ji & Serkan Ates, 2019. "Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review," Sustainability, MDPI, vol. 11(24), pages 1-30, December.
    15. Giovanni Litt & Mattia Bertin & Vittore Negretto & Francesco Musco, 2022. "Reinterpreting Spatial Planning Cultures to Define Local Adaptation Cultures: A Methodology from the Central Veneto Region Case," Sustainability, MDPI, vol. 14(12), pages 1-31, June.
    16. Haerani Haerani & Armando Apan & Badri Basnet, 2020. "The climate-induced alteration of future geographic distribution of aflatoxin in peanut crops and its adaptation options," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1149-1175, August.
    17. David N Wear & Jeffrey P Prestemon, 2019. "Spatiotemporal downscaling of global population and income scenarios for the United States," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    18. Arifa Jannat & Yuki Ishikawa-Ishiwata & Jun Furuya, 2021. "Assessing the Impacts of Climate Variations on the Potato Production in Bangladesh: A Supply and Demand Model Approach," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    19. Miho Kamei & Alessio Mastrucci & Bas J. van Ruijven, 2021. "A Future Outlook of Narratives for the Built Environment in Japan," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    20. Yi-Ming Wei & Rong Han & Qiao-Mei Liang & Bi-Ying Yu & Yun-Fei Yao & Mei-Mei Xue & Kun Zhang & Li-Jing Liu & Juan Peng & Pu Yang & Zhi-Fu Mi & Yun-Fei Du & Ce Wang & Jun-Jie Chang & Qian-Ru Yang & Zil, 2018. "An integrated assessment of INDCs under Shared Socioeconomic Pathways: an implementation of C3IAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 585-618, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:149:y:2018:i:2:d:10.1007_s10584-018-2227-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.