IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v33y2025i2d10.1007_s10100-025-00973-0.html
   My bibliography  Save this article

A robust infinite-horizon optimal control approach to climate economics

Author

Listed:
  • Frédéric Babonneau

    (Kedge Business School)

  • Alain Haurie

    (University of Geneva
    HEC-Montreal)

  • Marc Vielle

    (EPFL)

Abstract

An infinite-horizon optimal control paradigm is proposed to model the global energy transition to zero-net emissions when carbon dioxide removal (CDR) and electric fuel (E-Fuel) technologies become available. Infinite-horizon optimal trajectories for convex systems are often characterized by global asymptotic stability, where an attractor exists, which is defined as an extremal steady state. In our approach, this asymptotic attractor, known as the ‘turnpike’, represents a sustainable future with zero net emissions. The turnpike can be obtained by solving an “implicit” mathematical programming problem where we introduce robustness for taking into account some important uncertainties on the availability of $$\hbox {CO}_2$$ CO 2 storage. The complete mathematical description of an infinite-horizon optimal control formulation is complemented by the numerical illustration which shows results that are consistent with the goals of Paris-agreement.

Suggested Citation

  • Frédéric Babonneau & Alain Haurie & Marc Vielle, 2025. "A robust infinite-horizon optimal control approach to climate economics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 33(2), pages 499-528, June.
  • Handle: RePEc:spr:cejnor:v:33:y:2025:i:2:d:10.1007_s10100-025-00973-0
    DOI: 10.1007/s10100-025-00973-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-025-00973-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-025-00973-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    3. Cass, David & Shell, Karl, 1976. "The structure and stability of competitive dynamical systems," Journal of Economic Theory, Elsevier, vol. 12(1), pages 31-70, February.
    4. Joeri Rogelj & Piers M. Forster & Elmar Kriegler & Christopher J. Smith & Roland Séférian, 2019. "Estimating and tracking the remaining carbon budget for stringent climate targets," Nature, Nature, vol. 571(7765), pages 335-342, July.
    5. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    6. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(3), pages 233-240.
    7. Tyrrell Rockafellar, R., 1976. "Saddle points of Hamiltonian systems in convex Lagrange problems having a nonzero discount rate," Journal of Economic Theory, Elsevier, vol. 12(1), pages 71-113, February.
    8. Markus Ohndorf & Julia Blasch & Renate Schubert, 2015. "Emission budget approaches for burden sharing: some thoughts from an environmental economics point of view," Climatic Change, Springer, vol. 133(3), pages 385-395, December.
    9. Desport, Lucas & Gurgel, Angelo & Morris, Jennifer & Herzog, Howard & Chen, Yen-Heng Henry & Selosse, Sandrine & Paltsev, Sergey, 2024. "Deploying direct air capture at scale: How close to reality?," Energy Economics, Elsevier, vol. 129(C).
    10. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    11. Selosse, Sandrine & Ricci, Olivia, 2014. "Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model," Energy, Elsevier, vol. 76(C), pages 967-975.
    12. Angel Aguiar & Maksym Chepeliev & Erwin L. Corong & Robert McDougall & Dominique van der Mensbrugghe, 2019. "The GTAP Data Base: Version 10," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustav Feichtinger & Christophe Deissenberg & Ulrike Leopold-Wildburger, 2025. "George Leitmann’s 100th birthday," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 33(2), pages 333-344, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana Dimitrova, 2018. "The 2018 Nobel Prize in Economics," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 6, pages 98-152.
    2. Frederick Van der Ploeg & Armon Rezai, 2016. "Stranded Assets, the Social Cost of Carbon, and Directed Technical Change: Macroeconomic Dynamics of Optimal Climate Policy," CESifo Working Paper Series 5787, CESifo.
    3. van der Ploeg, Frederick & Rezai, Armon, 2021. "Optimal carbon pricing in general equilibrium: Temperature caps and stranded assets in an extended annual DSGE model," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    4. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    5. David Lagziel & Ehud Lehrer, 2024. "Performance cycles," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 77(4), pages 999-1024, June.
    6. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    7. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    8. Mitra, Tapan, 2002. "Intertemporal Equity and Efficient Allocation of Resources," Journal of Economic Theory, Elsevier, vol. 107(2), pages 356-376, December.
    9. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    10. Anthony J. Venables & Frederick Van Der Ploeg, 2022. "Radical Climate Policies," Economics Series Working Papers 990, University of Oxford, Department of Economics.
    11. Rick Van der Ploeg & Armon Rezai, 2015. "Intergenerational Inequality Aversion, Growth and the Role of Damages: Occam's rule for the global tax," Economics Series Working Papers OxCarre Research Paper 15, University of Oxford, Department of Economics.
    12. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    13. Laurence J. Kotlikoff & Andrey Polbin & Andrey Zubarev, 2016. "Will the Paris Accord Accelerate Climate Change?," NBER Working Papers 22731, National Bureau of Economic Research, Inc.
    14. Jussi Lintunen & Lauri Vilmi, 2021. "Optimal Emission Prices Over the Business Cycles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 135-167, September.
    15. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    16. Campiglio, Emanuele & Spiganti, Alessandro & Wiskich, Anthony, 2024. "Clean innovation, heterogeneous financing costs, and the optimal climate policy mix," Journal of Environmental Economics and Management, Elsevier, vol. 128(C).
    17. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    18. Venditti Alain, 2019. "Competitive equilibrium cycles for small discounting in discrete-time two-sector optimal growth models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(4), pages 1-14, September.
    19. Lorenzo Pellegrini & Murat Arsel & Gorka Muñoa & Guillem Rius-Taberner & Carlos Mena & Martí Orta-Martínez, 2024. "The atlas of unburnable oil for supply-side climate policies," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Emanuele Campiglio & Alessandro Spiganti & Anthony Wiskich, 2023. "Clean innovation and heterogeneous financing costs," Working Papers 2023: 07, Department of Economics, University of Venice "Ca' Foscari".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:33:y:2025:i:2:d:10.1007_s10100-025-00973-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.