IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v346y2025i2d10.1007_s10479-024-05831-x.html
   My bibliography  Save this article

Balancing bank profits and nonperforming loans: a multiple objective programming approach

Author

Listed:
  • Sabri Boubaker

    (EM Normandie Business School, Métis Lab
    Vietnam National University
    Swansea University)

  • Tu D. Q. Le

    (University of Economics and Law
    Vietnam National University)

  • Riadh Manita

    (NEOMA Business School)

  • Thanh Ngo

    (Massey University
    VNU University of Economics and Business)

Abstract

The recent operations research literature has witnessed an increasing trend of studies on banking efficiency, whereas nonperforming loans (NPLs) are often treated as undesirable output. A trending approach is to decompose the bank production into different processes or departments in charge of different inputs and outputs under the so-called network data envelopment analysis, in which a loan production department oversees both good and bad loans. This paper proposes a novel way to decompose the bank into two departments: one oversees profit maximization, and the other monitors NPLs minimization, making the bank’s main function multiple objective programming (MOP). We applied a MOP approach to examine the departmental and overall performance of 30 Vietnamese banks during 2019‒2021 and understand the factors that influence their performance. We found that the banks had their profit maximization performance improved. Still, NPLs minimization performance deteriorated during the examined period, indicating that the bad loans issue remains a threat to the industry. As such, balancing profits and NPLs is increasingly important for Vietnamese banks, with a focus on their risk management i.e., regarding the NPLs.

Suggested Citation

  • Sabri Boubaker & Tu D. Q. Le & Riadh Manita & Thanh Ngo, 2025. "Balancing bank profits and nonperforming loans: a multiple objective programming approach," Annals of Operations Research, Springer, vol. 346(2), pages 839-860, March.
  • Handle: RePEc:spr:annopr:v:346:y:2025:i:2:d:10.1007_s10479-024-05831-x
    DOI: 10.1007/s10479-024-05831-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-05831-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-05831-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    2. Matthews, Kent, 2013. "Risk management and managerial efficiency in Chinese banks: A network DEA framework," Omega, Elsevier, vol. 41(2), pages 207-215.
    3. Fujii, Hidemichi & Managi, Shunsuke & Matousek, Roman, 2014. "Indian bank efficiency and productivity changes with undesirable outputs: A disaggregated approach," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 41-50.
    4. Chuang-Min Chao & Ming-Miin Yu & Hsiao-Ning Wu, 2015. "An Application of the Dynamic Network DEA Model: The Case of Banks in Taiwan," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(S1), pages 133-151, January.
    5. Yu Shi & Anyu Yu & Huong Ngo Higgins & Joe Zhu, 2021. "Shared and unsplittable performance links in network DEA," Annals of Operations Research, Springer, vol. 303(1), pages 507-528, August.
    6. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    7. Fukuda, Shin-ichi & Kasuya, Munehisa & Akashi, Kentaro, 2009. "Impaired bank health and default risk," Pacific-Basin Finance Journal, Elsevier, vol. 17(2), pages 145-162, April.
    8. Zhiyang Shen & Jingyun Li & Michael Vardanyan & Bo Wang, 2022. "Nonparametric shadow pricing of non-performing loans: a study of the Chinese banking sector," Post-Print hal-03974915, HAL.
    9. Fiordelisi, Franco & Marques-Ibanez, David & Molyneux, Phil, 2011. "Efficiency and risk in European banking," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1315-1326, May.
    10. Avkiran, Necmi K., 2009. "Opening the black box of efficiency analysis: An illustration with UAE banks," Omega, Elsevier, vol. 37(4), pages 930-941, August.
    11. Lee, Chi-Chuan & Li, Xinrui & Yu, Chin-Hsien & Zhao, Jinsong, 2021. "Does fintech innovation improve bank efficiency? Evidence from China’s banking industry," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 468-483.
    12. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    13. Chiang Kao, 2017. "Network Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-3-319-31718-2, June.
    14. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    15. Wade Cook & Moez Hababou & Hans Tuenter, 2000. "Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches," Journal of Productivity Analysis, Springer, vol. 14(3), pages 209-224, November.
    16. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    17. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    18. Yang, Chyan & Liu, Hsian-Ming, 2012. "Managerial efficiency in Taiwan bank branches: A network DEA," Economic Modelling, Elsevier, vol. 29(2), pages 450-461.
    19. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    20. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    21. Amal Alabbad & Andrea Schertler, 2022. "COVID-19 and bank performance in dual-banking countries: an empirical analysis," Journal of Business Economics, Springer, vol. 92(9), pages 1511-1557, November.
    22. Kao, Chiang, 2009. "Efficiency measurement for parallel production systems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1107-1112, August.
    23. Sealey, Calvin W, Jr & Lindley, James T, 1977. "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance, American Finance Association, vol. 32(4), pages 1251-1266, September.
    24. Wang, Ke & Huang, Wei & Wu, Jie & Liu, Ying-Nan, 2014. "Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA," Omega, Elsevier, vol. 44(C), pages 5-20.
    25. Hirofumi Fukuyama & William Weber, 2015. "Measuring Japanese bank performance: a dynamic network DEA approach," Journal of Productivity Analysis, Springer, vol. 44(3), pages 249-264, December.
    26. Chau H. A. Le & Hieu L. Nguyen, 2019. "Collateral Quality and Loan Default Risk: The Case of Vietnam," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 61(1), pages 103-118, March.
    27. Zhou, Xiaoyang & Xu, Zhongwen & Chai, Jian & Yao, Liming & Wang, Shouyang & Lev, Benjamin, 2019. "Efficiency evaluation for banking systems under uncertainty: A multi-period three-stage DEA model," Omega, Elsevier, vol. 85(C), pages 68-82.
    28. Park, Kang H. & Weber, William L., 2006. "A note on efficiency and productivity growth in the Korean Banking Industry, 1992-2002," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2371-2386, August.
    29. Sabri Boubaker & T.D.Q. Le & T. Ngo & R. Manita, 2023. "Predicting the Performance of MSMEs: A Hybrid DEA-machine Learning Approach," Post-Print hal-04434027, HAL.
    30. Tu D. Q. Le & Tin H. Ho & Thanh Ngo & Dat T. Nguyen & Son H. Tran, 2022. "A Dataset for the Vietnamese Banking System (2002–2021)," Data, MDPI, vol. 7(9), pages 1-8, August.
    31. Chau Le & Aleksandar Šević & Panayiotis G. Tzeremes & Trong Ngo, 2022. "Bank efficiency in Vietnam: Do scale expansion strategies and non‐performing loans matter?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 822-843, January.
    32. Chen, Yao & Du, Juan & David Sherman, H. & Zhu, Joe, 2010. "DEA model with shared resources and efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(1), pages 339-349, November.
    33. Sotiros, Dimitris & Koronakos, Gregory & Despotis, Dimitris K., 2019. "Dominance at the divisional efficiencies level in network DEA: The case of two-stage processes," Omega, Elsevier, vol. 85(C), pages 144-155.
    34. Lozano, Sebastián, 2016. "Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector," Omega, Elsevier, vol. 60(C), pages 73-84.
    35. Morteza Alaeddini & Philippe Madiès & Paul J. Reaidy & Julie Dugdale, 2023. "Interbank money market concerns and actors’ strategies—A systematic review of 21st century literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 573-654, April.
    36. Chiang Kao, 2014. "Efficiency Decomposition in Network Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 55-77, Springer.
    37. Morteza Alaeddini & Philippe Madiès & Paul Reaidy & Julie Dugdale, 2023. "Interbank money market concerns and actors’ strategies—A systematic review of 21st century literature," Post-Print hal-03583212, HAL.
    38. Alexakis, Christos & Izzeldin, Marwan & Johnes, Jill & Pappas, Vasileios, 2019. "Performance and productivity in Islamic and conventional banks: Evidence from the global financial crisis," Economic Modelling, Elsevier, vol. 79(C), pages 1-14.
    39. Barros, Carlos Pestana & Managi, Shunsuke & Matousek, Roman, 2012. "The technical efficiency of the Japanese banks: Non-radial directional performance measurement with undesirable output," Omega, Elsevier, vol. 40(1), pages 1-8, January.
    40. Fukuyama, Hirofumi & Matousek, Roman, 2017. "Modelling bank performance: A network DEA approach," European Journal of Operational Research, Elsevier, vol. 259(2), pages 721-732.
    41. Tu DQ. Le & Thanh Ngo, 2020. "The determinants of bank profitability : A cross-country analysis," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 20(2), pages 65-73.
    42. Elnahass, Marwa & Trinh, Vu Quang & Li, Teng, 2021. "Global banking stability in the shadow of Covid-19 outbreak," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    43. Feng, Guohua & Wang, Chuan, 2018. "Why European banks are less profitable than U.S. banks: A decomposition approach," Journal of Banking & Finance, Elsevier, vol. 90(C), pages 1-16.
    44. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
    45. Degl'Innocenti, Marta & Kourtzidis, Stavros A. & Sevic, Zeljko & Tzeremes, Nickolaos G., 2017. "Bank productivity growth and convergence in the European Union during the financial crisis," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 184-199.
    46. Park, Cyn-Young & Shin, Kwanho, 2021. "COVID-19, nonperforming loans, and cross-border bank lending," Journal of Banking & Finance, Elsevier, vol. 133(C).
    47. Cook, Wade D. & Hababou, Moez, 2001. "Sales performance measurement in bank branches," Omega, Elsevier, vol. 29(4), pages 299-307, August.
    48. Lin, Kun-Li & Doan, Anh Tuan & Doong, Shuh-Chyi, 2016. "Changes in ownership structure and bank efficiency in Asian developing countries: The role of financial freedom," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 19-34.
    49. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    50. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    51. Kao, Chiang & Hwang, Shiuh-Nan, 2014. "Multi-period efficiency and Malmquist productivity index in two-stage production systems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 512-521.
    52. Weiwei Zhu & Qian Zhang & Haiqing Wang, 2019. "Fixed costs and shared resources allocation in two-stage network DEA," Annals of Operations Research, Springer, vol. 278(1), pages 177-194, July.
    53. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    54. Sánchez Serrano, Antonio, 2021. "The impact of non-performing loans on bank lending in Europe: An empirical analysis," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    55. Ms. TengTeng Xu & Kun Hu & Mr. Udaibir S Das, 2019. "Bank Profitability and Financial Stability," IMF Working Papers 2019/005, International Monetary Fund.
    56. Alqahtani, Faisal & Mayes, David G. & Brown, Kym, 2017. "Islamic bank efficiency compared to conventional banks during the global crisis in the GCC region," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 58-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    2. Dan Li & Yanfeng Li & Yeming Gong & Jiawei Yang, 2021. "Estimation of bank performance from multiple perspectives: an alternative solution to the deposit dilemma," Journal of Productivity Analysis, Springer, vol. 56(2), pages 151-170, December.
    3. Huaqing Wu & Jingyu Yang & Wensheng Wu & Ya Chen, 2023. "Interest rate liberalization and bank efficiency: A DEA analysis of Chinese commercial banks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 467-498, June.
    4. Kourtzidis, Stavros & Matousek, Roman & Tzeremes, Nickolaos G., 2021. "Modelling a multi-period production process: Evidence from the Japanese regional banks," European Journal of Operational Research, Elsevier, vol. 294(1), pages 327-339.
    5. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    6. Boussemart, Jean-Philippe & Leleu, Hervé & Shen, Zhiyang & Vardanyan, Michael & Zhu, Ning, 2019. "Decomposing banking performance into economic and credit risk efficiencies," European Journal of Operational Research, Elsevier, vol. 277(2), pages 719-726.
    7. Giannis Karagiannis & Stavros Kourtzidis, 2025. "On modelling non‐performing loans in bank efficiency analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(2), pages 1742-1757, April.
    8. Fukuyama, Hirofumi & Tan, Yong, 2022. "Implementing strategic disposability for performance evaluation: Innovation, stability, profitability and corporate social responsibility in Chinese banking," European Journal of Operational Research, Elsevier, vol. 296(2), pages 652-668.
    9. Zhao, Linlin & Zhu, Qingyuan & Zhang, Lin, 2021. "Regulation adaptive strategy and bank efficiency: A network slacks-based measure with shared resources," European Journal of Operational Research, Elsevier, vol. 295(1), pages 348-362.
    10. Hirofumi Fukuyama & Yong Tan, 2024. "Investigating into the dual role of loan loss reserves in banking production process," Annals of Operations Research, Springer, vol. 334(1), pages 423-444, March.
    11. Hirofumi Fukuyama & Mike Tsionas & Yong Tan, 2024. "Incorporating causal modeling into data envelopment analysis for performance evaluation," Annals of Operations Research, Springer, vol. 342(3), pages 1865-1904, November.
    12. Liu, Wenbin & Zhou, Zhongbao & Ma, Chaoqun & Liu, Debin & Shen, Wanfang, 2015. "Two-stage DEA models with undesirable input-intermediate-outputs," Omega, Elsevier, vol. 56(C), pages 74-87.
    13. Wasi Ul Hassan Shah & Gang Hao & Nan Zhu & Rizwana Yasmeen & Ihtsham Ul Haq Padda & Muhammad Abdul Kamal, 2022. "A cross-country efficiency and productivity evaluation of commercial banks in South Asia: A meta-frontier and Malmquist productivity index approach," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-17, April.
    14. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2024. "A unified framework for nonperforming loan modeling in bank production: An application of data envelopment analysis," Omega, Elsevier, vol. 126(C).
    15. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.
    16. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2022. "Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach," Omega, Elsevier, vol. 113(C).
    17. Gulati, Rachita & Charles, Vincent & Hassan, M. Kabir & Kumar, Sunil, 2023. "COVID-19 crisis and the efficiency of Indian banks: Have they weathered the storm?," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    18. Shi, Yu & Charles, Vincent & Zhu, Joe, 2025. "Bank financial sustainability evaluation: Data envelopment analysis with random forest and Shapley additive explanations," European Journal of Operational Research, Elsevier, vol. 321(2), pages 614-630.
    19. Mohamed Dia & Amirmohsen Golmohammadi & Pawoumodom M. Takouda, 2020. "Relative Efficiency of Canadian Banks: A Three-Stage Network Bootstrap DEA," JRFM, MDPI, vol. 13(4), pages 1-25, April.
    20. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.

    More about this item

    Keywords

    Multiple objective programming (MOP); Data envelopment analysis (DEA); Profit maximization; Non-performing loans minimization; Vietnamese banks;
    All these keywords.

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • L21 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Business Objectives of the Firm

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:346:y:2025:i:2:d:10.1007_s10479-024-05831-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.