IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i1d10.1007_s10479-023-05663-1.html
   My bibliography  Save this article

Sharing the cost of hazardous transportation networks and the Priority Shapley value for multi-choice games

Author

Listed:
  • Sylvain Béal

    (Université de Franche-Comté, CRESE - F-25000)

  • Adriana Navarro-Ramos

    (Université de Saint-Etienne, GATE Lyon Saint-Etienne UMR 5824)

  • Eric Rémila

    (Université de Saint-Etienne, GATE Lyon Saint-Etienne UMR 5824)

  • Philippe Solal

    (Université de Saint-Etienne, GATE Lyon Saint-Etienne UMR 5824)

Abstract

We consider the cost sharing issue resulting from the maintenance of a hazardous waste transportation network represented by a sink tree. The participating agents are located on the nodes of the network and must transport their waste to the sink through costly network portions. We introduce the Liability rule, which is inspired by the principles applied by the courts to settle cost-allocation disputes in the context of hazardous waste. We provide an axiomatic characterization of this rule. Furthermore, we show that the Liability rule coincides with the Priority Shapley value, a new value on an appropriate domain of multi-choice games arising from hazardous waste transportation problems. Finally, we also axiomatize the Priority Shapley value on the full domain of multi-choice games.

Suggested Citation

  • Sylvain Béal & Adriana Navarro-Ramos & Eric Rémila & Philippe Solal, 2025. "Sharing the cost of hazardous transportation networks and the Priority Shapley value for multi-choice games," Annals of Operations Research, Springer, vol. 345(1), pages 59-103, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:1:d:10.1007_s10479-023-05663-1
    DOI: 10.1007/s10479-023-05663-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05663-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05663-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Grabisch & Lijue Xie, 2007. "A new approach to the core and Weber set of multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 491-512, December.
    2. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    3. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    4. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    5. José Zarzuelo & Marco Slikker & Flip Klijn, 1999. "Characterizations of a multi-choice value," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 521-532.
    6. Alcalde-Unzu, Jorge & Gómez-Rúa, María & Molis, Elena, 2015. "Sharing the costs of cleaning a river: the Upstream Responsibility rule," Games and Economic Behavior, Elsevier, vol. 90(C), pages 134-150.
    7. S. Z. Alparslan Gök, 2012. "On the Interval Baker‐Thompson Rule," Journal of Applied Mathematics, John Wiley & Sons, vol. 2012(1).
    8. Casajus, André & Huettner, Frank, 2013. "Null players, solidarity, and the egalitarian Shapley values," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 58-61.
    9. Youngsub Chun & Cheng‐Cheng Hu & Chun‐Hsien Yeh, 2012. "Characterizations of the sequential equal contributions rule for the airport problem," International Journal of Economic Theory, The International Society for Economic Theory, vol. 8(1), pages 77-85, March.
    10. S.C. Littlechild & G.F. Thompson, 1977. "Aircraft Landing Fees: A Game Theory Approach," Bell Journal of Economics, The RAND Corporation, vol. 8(1), pages 186-204, Spring.
    11. Cruijssen, Frans & Borm, Peter & Fleuren, Hein & Hamers, Herbert, 2010. "Supplier-initiated outsourcing: A methodology to exploit synergy in transportation," European Journal of Operational Research, Elsevier, vol. 207(2), pages 763-774, December.
    12. S. C. Littlechild & G. Owen, 1973. "A Simple Expression for the Shapley Value in a Special Case," Management Science, INFORMS, vol. 20(3), pages 370-372, November.
    13. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    14. Dehez, Pierre & Ferey, Samuel, 2013. "How to share joint liability: A cooperative game approach," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 44-50.
    15. Grahame F. Thompson, 2020. "Deal or no deal? Some reflections on the ‘Baker-Thompson rule,’ ‘matching,’ and ‘market design’," Journal of Cultural Economy, Taylor & Francis Journals, vol. 13(5), pages 652-662, September.
    16. Fragnelli, Vito & Marina, Maria Erminia, 2010. "An axiomatic characterization of the Baker-Thompson rule," Economics Letters, Elsevier, vol. 107(2), pages 85-87, May.
    17. Flisberg, Patrik & Frisk, Mikael & Rönnqvist, Mikael & Guajardo, Mario, 2015. "Potential savings and cost allocations for forest fuel transportation in Sweden: A country-wide study," Energy, Elsevier, vol. 85(C), pages 353-365.
    18. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
    19. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Correction to: Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(3), pages 555-555, October.
    20. Gök Sırma Zeynep Alparslan & Rodica Branzei & Stef Tijs, 2009. "Airport interval games and their Shapley value," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(2), pages 9-18.
    21. Derks, Jean & Peters, Hans, 1993. "A Shapley Value for Games with Restricted Coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 351-360.
    22. Casajus, André & Huettner, Frank, 2014. "Weakly monotonic solutions for cooperative games," Journal of Economic Theory, Elsevier, vol. 154(C), pages 162-172.
    23. van den Brink, René & He, Simin & Huang, Jia-Ping, 2018. "Polluted river problems and games with a permission structure," Games and Economic Behavior, Elsevier, vol. 108(C), pages 182-205.
    24. S. Z. Alparslan Gök, 2012. "On the Interval Baker-Thompson Rule," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-5, May.
    25. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    26. Hou, Dongshuang & Sun, Hao & Sun, Panfei & Driessen, Theo, 2018. "A note on the Shapley value for airport cost pooling game," Games and Economic Behavior, Elsevier, vol. 108(C), pages 162-169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvain Béal & Adriana Navarro-Ramos & Eric Rémila & Philippe Solal, 2023. "Sharing the cost of hazardous transportation networks and the Priority Shapley value," Working Papers 2023-03, CRESE.
    2. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    3. Abe, Takaaki & Nakada, Satoshi, 2023. "The in-group egalitarian Owen values," Games and Economic Behavior, Elsevier, vol. 142(C), pages 1-16.
    4. Takumi Kongo, 2024. "Equal support from others for unproductive players: efficient and linear values that satisfy the equal treatment and weak null player out properties for cooperative games," Annals of Operations Research, Springer, vol. 338(2), pages 973-989, July.
    5. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    6. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    7. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    8. David Lowing & Kevin Techer, 2021. "Marginalism, Egalitarianism and E ciency in Multi-Choice Games," Working Papers halshs-03334056, HAL.
    9. Thomson, William, 2024. "Cost allocation and airport problems," Mathematical Social Sciences, Elsevier, vol. 131(C), pages 17-31.
    10. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2022. "Monotonicity in sharing the revenues from broadcasting sports leagues," European Journal of Operational Research, Elsevier, vol. 297(1), pages 338-346.
    11. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    12. Grahame F. Thompson, 2020. "Deal or no deal? Some reflections on the ‘Baker-Thompson rule,’ ‘matching,’ and ‘market design’," Journal of Cultural Economy, Taylor & Francis Journals, vol. 13(5), pages 652-662, September.
    13. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    14. Surajit Borkotokey & Sujata Goala & Niharika Kakoty & Parishmita Boruah, 2022. "The component-wise egalitarian Myerson value for Network Games," Papers 2201.02793, arXiv.org.
    15. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    16. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Genjiu Xu, 2019. "Sharing a Polluted River under Waste Flow Control," GREDEG Working Papers 2019-23, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    17. Takayuki Oishi & Gerard van der Laan & René van den Brink, 2018. "The Tort Law and the Nucleolus for Generalized Joint Liability Problems," Discussion Papers 37, Meisei University, School of Economics.
    18. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    19. David Lowing & Makoto Yokoo, 2023. "Sharing values for multi-choice games: an axiomatic approach," Working Papers hal-04018735, HAL.
    20. Jens Gudmundsson & Jens Leth Hougaard & Chiu Yu Ko, 2020. "Sharing sequentially triggered losses," IFRO Working Paper 2020/05, University of Copenhagen, Department of Food and Resource Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:1:d:10.1007_s10479-023-05663-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.