IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v83y2017i1d10.1007_s11238-017-9586-z.html
   My bibliography  Save this article

Axiomatization and implementation of a class of solidarity values for TU-games

Author

Listed:
  • Sylvain Béal

    (Univ. Bourgogne Franche-Comté)

  • Eric Rémila

    (Université de Saint-Etienne, CNRS UMR 5824 GATE Lyon Saint-Etienne)

  • Philippe Solal

    (Université de Saint-Etienne, CNRS UMR 5824 GATE Lyon Saint-Etienne)

Abstract

A new class of values combining marginalistic and egalitarian principles is introduced for cooperative TU-games. It includes some modes of solidarity among the players by taking the collective contribution of some coalitions to the grand coalition into account. Relationships with other class of values such as the Egalitarian Shapley values and the Procedural values are discussed. We propose a strategic implementation of our class of values in subgame perfect Nash equilibrium. Two axiomatic characterizations are provided: one of the whole class of values, and one of each of its extreme points.

Suggested Citation

  • Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
  • Handle: RePEc:kap:theord:v:83:y:2017:i:1:d:10.1007_s11238-017-9586-z
    DOI: 10.1007/s11238-017-9586-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11238-017-9586-z
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11238-017-9586-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    2. Yuan Ju & David Wettstein, 2009. "Implementing cooperative solution concepts: a generalized bidding approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(2), pages 307-330, May.
    3. David Pérez-Castrillo & David Wettstein, 2002. "Choosing Wisely: A Multibidding Approach," American Economic Review, American Economic Association, vol. 92(5), pages 1577-1587, December.
    4. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    5. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    6. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    7. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    8. Chameni Nembua, C., 2012. "Linear efficient and symmetric values for TU-games: Sharing the joint gain of cooperation," Games and Economic Behavior, Elsevier, vol. 74(1), pages 431-433.
    9. Ruiz, Luis M & Valenciano, Federico & Zarzuelo, Jose M, 1996. "The Least Square Prenucleolus and the Least Square Nucleolus. Two Values for TU Games Based on the Excess Vector," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 113-134.
    10. Casajus, André & Huettner, Frank, 2014. "Weakly monotonic solutions for cooperative games," Journal of Economic Theory, Elsevier, vol. 154(C), pages 162-172.
    11. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
    12. H. Moulin, 1984. "The Conditional Auction Mechanism for Sharing a Surplus," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 51(1), pages 157-170.
    13. Tadeusz Radzik & Theo Driessen, 2016. "Modeling values for TU-games using generalized versions of consistency, standardness and the null player property," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 179-205, April.
    14. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 43-48.
    15. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
    16. Casajus, André & Huettner, Frank, 2013. "Null players, solidarity, and the egalitarian Shapley values," Journal of Mathematical Economics, Elsevier, vol. 49(1), pages 58-61.
    17. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    18. García, Diego & Vanden, Joel M., 2009. "Information acquisition and mutual funds," Journal of Economic Theory, Elsevier, vol. 144(5), pages 1965-1995, September.
    19. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    20. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 305-324, February.
    21. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Hao Sun, 2019. "Procedural and optimization implementation of the weighted ENSC value," Theory and Decision, Springer, vol. 87(2), pages 171-182, September.
    2. Surajit Borkotokey & Loyimee Gogoi & Dhrubajit Choudhury & Rajnish Kumar, 2022. "Solidarity induced by group contributions: the MI $$^k$$ k -value for transferable utility games," Operational Research, Springer, vol. 22(2), pages 1267-1290, April.
    3. Xun-Feng Hu & Gen-Jiu Xu & Deng-Feng Li, 2019. "The Egalitarian Efficient Extension of the Aumann–Drèze Value," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 1033-1052, June.
    4. Sylvain Béal & Sylvain Ferrières & Eric Rémila & Philippe Solal, 2017. "Axiomatic and bargaining foundation of an allocation rule for ordered tree TU-games," Post-Print halshs-01644797, HAL.
    5. Borkotokey, Surajit & Choudhury, Dhrubajit & Kumar, Rajnish & Sarangi, Sudipta, 2020. "Consolidating Marginalism and Egalitarianism: A New Value for Transferable Utility Games," QBS Working Paper Series 2020/12, Queen's University Belfast, Queen's Business School.
    6. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    7. Emilio Calvo & Esther Gutiérrez-López, 2018. "Discounted Solidarity Values," Discussion Papers in Economic Behaviour 0418, University of Valencia, ERI-CES.
    8. Jun Su & Yuan Liang & Guangmin Wang & Genjiu Xu, 2020. "Characterizations, Potential, and an Implementation of the Shapley-Solidarity Value," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    9. Ben Dhaou Bourheneddine & Ziad Abderrahmane, 2023. "Free Solidarity Value," Economics Working Paper Archive (University of Rennes & University of Caen) 2023-07, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    10. Rong Zou & Wenzhong Li & Marc Uetz & Genjiu Xu, 2023. "Two-step Shapley-solidarity value for cooperative games with coalition structure," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 1-25, March.
    11. Borkotokey, Surajit & Choudhury, Dhrubajit & Gogoi, Loyimee & Kumar, Rajnish, 2020. "Group contributions in TU-games: A class of k-lateral Shapley values," European Journal of Operational Research, Elsevier, vol. 286(2), pages 637-648.
    12. Gutiérrez-López, Esther, 2020. "Axiomatic characterizations of the egalitarian solidarity values," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 109-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    2. Emilio Calvo Ramón & Esther Gutiérrez-López, 2022. "The equal collective gains value in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 249-278, March.
    3. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    4. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    5. Wenzhong Li & Genjiu Xu & Rong Zou & Dongshuang Hou, 2022. "The allocation of marginal surplus for cooperative games with transferable utility," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 353-377, June.
    6. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    7. Borkotokey, Surajit & Choudhury, Dhrubajit & Gogoi, Loyimee & Kumar, Rajnish, 2020. "Group contributions in TU-games: A class of k-lateral Shapley values," European Journal of Operational Research, Elsevier, vol. 286(2), pages 637-648.
    8. Tadeusz Radzik, 2017. "On an extension of the concept of TU-games and their values," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 149-170, August.
    9. Sylvain Ferrières, 2017. "Nullified equal loss property and equal division values," Theory and Decision, Springer, vol. 83(3), pages 385-406, October.
    10. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    11. Jun Su & Yuan Liang & Guangmin Wang & Genjiu Xu, 2020. "Characterizations, Potential, and an Implementation of the Shapley-Solidarity Value," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    12. Borkotokey, Surajit & Choudhury, Dhrubajit & Kumar, Rajnish & Sarangi, Sudipta, 2020. "Consolidating Marginalism and Egalitarianism: A New Value for Transferable Utility Games," QBS Working Paper Series 2020/12, Queen's University Belfast, Queen's Business School.
    13. Surajit Borkotokey & Loyimee Gogoi & Dhrubajit Choudhury & Rajnish Kumar, 2022. "Solidarity induced by group contributions: the MI $$^k$$ k -value for transferable utility games," Operational Research, Springer, vol. 22(2), pages 1267-1290, April.
    14. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    15. Gutiérrez-López, Esther, 2020. "Axiomatic characterizations of the egalitarian solidarity values," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 109-115.
    16. Ander Perez-Orive & Andrea Caggese, 2017. "Capital Misallocation and Secular Stagnation," 2017 Meeting Papers 382, Society for Economic Dynamics.
    17. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Axioms of invariance for TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 891-902, November.
    18. Chameni Nembua, C. & Miamo Wendji, C., 2016. "Ordinal equivalence of values, Pigou–Dalton transfers and inequality in TU-games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 117-133.
    19. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    20. Macho-Stadler, Inés & Pérez-Castrillo, David & Wettstein, David, 2018. "Values for environments with externalities – The average approach," Games and Economic Behavior, Elsevier, vol. 108(C), pages 49-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:83:y:2017:i:1:d:10.1007_s11238-017-9586-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.