IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v332y2024i1d10.1007_s10479-023-05558-1.html
   My bibliography  Save this article

Cohesive players: characterizations of a subclass of efficient, symmetric, and linear values

Author

Listed:
  • Li Zhang

    (Northwestern Polytechnical University
    Changzhi University
    Optimization and Artificial Intelligence)

  • Genjiu Xu

    (Northwestern Polytechnical University
    Optimization and Artificial Intelligence)

  • Hao Sun

    (Northwestern Polytechnical University
    Optimization and Artificial Intelligence)

  • Wenzhong Li

    (Northwestern Polytechnical University
    Optimization and Artificial Intelligence)

Abstract

In this paper, we introduce the cohesive players and a related axiom called equal surplus of cohesive players. On this basis, we study the subclass of efficient, symmetric, and linear (ESL) values satisfying equal surplus of cohesive players. We first give an analytical formula and also propose two characterizations for this subclass of ESL values. With these characterizations, we discuss the relationships between this subclass and other classical ESL values, in particular the Shapley value. We then characterize each value in the subclass of ESL values satisfying equal surplus of cohesive players by introducing the $$\beta $$ β -null player surplus property and the $$\beta $$ β -reward cohesive player property. From this, we obtain new parallel characterizations of the Shapley value and the equal surplus division value. Moreover, we show that equal surplus of cohesive players can replace symmetry in many well-known characterizations of values.

Suggested Citation

  • Li Zhang & Genjiu Xu & Hao Sun & Wenzhong Li, 2024. "Cohesive players: characterizations of a subclass of efficient, symmetric, and linear values," Annals of Operations Research, Springer, vol. 332(1), pages 765-779, January.
  • Handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-023-05558-1
    DOI: 10.1007/s10479-023-05558-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05558-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05558-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moulin, Herve, 1985. "The separability axiom and equal-sharing methods," Journal of Economic Theory, Elsevier, vol. 36(1), pages 120-148, June.
    2. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    3. Zou, Zhengxing & van den Brink, René, 2020. "Equal loss under separatorization and egalitarian values," Economics Letters, Elsevier, vol. 194(C).
    4. Chun, Youngsub, 1991. "On the Symmetric and Weighted Shapley Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(2), pages 183-190.
    5. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
    6. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    7. van den Brink, Rene & Gilles, Robert P., 1996. "Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures," Games and Economic Behavior, Elsevier, vol. 12(1), pages 113-126, January.
    8. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Post-Print hal-03252179, HAL.
    9. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 305-324, February.
    10. Tadeusz Radzik & Theo Driessen, 2016. "Modeling values for TU-games using generalized versions of consistency, standardness and the null player property," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 179-205, April.
    11. José M. Alonso-Meijide & Julián Costa & Ignacio García-Jurado, 2019. "Null, Nullifying, and Necessary Agents: Parallel Characterizations of the Banzhaf and Shapley Values," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1027-1035, March.
    12. Casajus, André & Huettner, Frank, 2014. "Null, nullifying, or dummifying players: The difference between the Shapley value, the equal division value, and the equal surplus division value," Economics Letters, Elsevier, vol. 122(2), pages 167-169.
    13. Wenzhong Li & Genjiu Xu & Rong Zou & Dongshuang Hou, 2022. "The allocation of marginal surplus for cooperative games with transferable utility," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 353-377, June.
    14. Wenna Wang & Hao Sun & René Brink & Genjiu Xu, 2019. "The Family of Ideal Values for Cooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1065-1086, March.
    15. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
    16. L. S. Shapley & Martin Shubik, 1967. "Ownership and the Production Function," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 81(1), pages 88-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    2. Emilio Calvo Ramón & Esther Gutiérrez-López, 2022. "The equal collective gains value in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 249-278, March.
    3. Zhang, Li & Xu, Genjiu & Sun, Hao & Li, Wenzhong, 2023. "Players’ dummification and the dummified egalitarian non-separable contribution value," Economics Letters, Elsevier, vol. 226(C).
    4. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    5. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "A Class of Solidarity Allocation Rules for TU-games," Working Papers 2015-03, CRESE.
    6. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    7. Wenzhong Li & Genjiu Xu & Rong Zou & Dongshuang Hou, 2022. "The allocation of marginal surplus for cooperative games with transferable utility," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 353-377, June.
    8. Borkotokey, Surajit & Choudhury, Dhrubajit & Gogoi, Loyimee & Kumar, Rajnish, 2020. "Group contributions in TU-games: A class of k-lateral Shapley values," European Journal of Operational Research, Elsevier, vol. 286(2), pages 637-648.
    9. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Working Papers 2020-01, CRESE.
    10. Sylvain Ferrières, 2017. "Nullified equal loss property and equal division values," Theory and Decision, Springer, vol. 83(3), pages 385-406, October.
    11. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    12. Panfei Sun & Dongshuang Hou & Hao Sun & Theo Driessen, 2017. "Optimization Implementation and Characterization of the Equal Allocation of Nonseparable Costs Value," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 336-352, April.
    13. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    14. Zhengxing Zou & René Brink & Youngsub Chun & Yukihiko Funaki, 2021. "Axiomatizations of the proportional division value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 35-62, July.
    15. Dongshuang Hou & Weibin Han & Genjiu Xu & Yifan Feng, 2024. "A generalization of the CIS value for cooperative cost games," 4OR, Springer, vol. 22(1), pages 17-30, March.
    16. Lee, Joosung & Driessen, Theo S.H., 2012. "Sequentially two-leveled egalitarianism for TU games: Characterization and application," European Journal of Operational Research, Elsevier, vol. 220(3), pages 736-743.
    17. Chameni Nembua, C. & Miamo Wendji, C., 2016. "Ordinal equivalence of values, Pigou–Dalton transfers and inequality in TU-games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 117-133.
    18. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Axioms of invariance for TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 891-902, November.
    19. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    20. David Wettstein & David Pérez-Castrillo & Inés Macho-Stadler, 2016. "Values for Environments with Externalities – The Average Approach," Working Papers 919, Barcelona School of Economics.

    More about this item

    Keywords

    Cooperative games; Cohesive players; Equal surplus of cohesive players; Efficient; symmetric; and linear values;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D60 - Microeconomics - - Welfare Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-023-05558-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.