IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v40y2015i1p69-95.html
   My bibliography  Save this article

Multiple Imputation of Multilevel Missing Data—Rigor Versus Simplicity

Author

Listed:
  • Jörg Drechsler

    (Institute for Employment Research)

Abstract

Multiple imputation is widely accepted as the method of choice to address item-nonresponse in surveys. However, research on imputation strategies for the hierarchical structures that are typically found in the data in educational contexts is still limited. While a multilevel imputation model should be preferred from a theoretical point of view if the analysis model of interest is also a multilevel model, many practitioners prefer a fixed effects imputation model with dummies for the clusters since these models are easy to set up with standard imputation software. In this article, we theoretically and empirically evaluate the impacts of this simplified approach. We illustrate that the cluster effects that are often of central interest in educational research can be biased if a fixed effects imputation model is used. We show that the potential bias depends on three quantities: the amount of missingness, the intraclass correlation, and the cluster size. We argue that the bias for the random effects can be substantial while the bias for the fixed effects will be negligible in most real-data situations. We further illustrate this with an application using data from the German National Educational Panel Survey.

Suggested Citation

  • Jörg Drechsler, 2015. "Multiple Imputation of Multilevel Missing Data—Rigor Versus Simplicity," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 69-95, February.
  • Handle: RePEc:sae:jedbes:v:40:y:2015:i:1:p:69-95
    DOI: 10.3102/1076998614563393
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998614563393
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998614563393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    2. Jörg Drechsler, 2011. "Multiple imputation in practice—a case study using a complex German establishment survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 1-26, March.
    3. Jörg Drechsler, 2012. "New data dissemination approaches in old Europe -- synthetic datasets for a German establishment survey," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 243-265, April.
    4. Satkartar K. Kinney & Jerome P. Reiter & Arnold P. Reznek & Javier Miranda & Ron S. Jarmin & John M. Abowd, 2011. "Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database," International Statistical Review, International Statistical Institute, vol. 79(3), pages 362-384, December.
    5. Drechsler, Jörg & Dundler, Agnes & Bender, Stefan & Rässler, Susanne & Zwick, Thomas, 2007. "A new approach for disclosure control in the IAB Establishment Panel : multiple imputation for a better data access," IAB-Discussion Paper 200711, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    6. Clarke, Paul & Crawford, Claire & Steele, Fiona & Vignoles, Anna, 2010. "The Choice Between Fixed and Random Effects Models: Some Considerations for Educational Research," IZA Discussion Papers 5287, Institute of Labor Economics (IZA).
    7. Carpenter, James R. & Goldstein, Harvey & Kenward, Michael G., 2011. "REALCOM-IMPUTE Software for Multilevel Multiple Imputation with Mixed Response Types," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i05).
    8. Yucel, Recai M. & He, Yulei & Zaslavsky, Alan M., 2008. "Using Calibration to Improve Rounding in Imputation," The American Statistician, American Statistical Association, vol. 62, pages 125-129, May.
    9. Zhou, Xiang & Reiter, Jerome P., 2010. "A Note on Bayesian Inference After Multiple Imputation," The American Statistician, American Statistical Association, vol. 64(2), pages 159-163.
    10. Drechsler, Jörg & Reiter, Jerome P., 2010. "Sampling With Synthesis: A New Approach for Releasing Public Use Census Microdata," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1347-1357.
    11. Karr, A.F. & Kohnen, C.N. & Oganian, A. & Reiter, J.P. & Sanil, A.P., 2006. "A Framework for Evaluating the Utility of Data Altered to Protect Confidentiality," The American Statistician, American Statistical Association, vol. 60, pages 224-232, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Vidotto & Jeroen K. Vermunt & Katrijn van Deun, 2018. "Bayesian Multilevel Latent Class Models for the Multiple Imputation of Nested Categorical Data," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 511-539, October.
    2. Xiao Tan & Leah Ruppanner & David Maume & Belinda Hewitt, 2021. "Do managers sleep well? The role of gender, gender empowerment and economic development," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
    3. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2018. "Multiple Imputation of Missing Data at Level 2: A Comparison of Fully Conditional and Joint Modeling in Multilevel Designs," Journal of Educational and Behavioral Statistics, , vol. 43(3), pages 316-353, June.
    4. Chun Wang & Gongjun Xu & Xue Zhang, 2019. "Correction for Item Response Theory Latent Trait Measurement Error in Linear Mixed Effects Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 673-700, September.
    5. Kristian Kleinke, 2017. "Multiple Imputation Under Violated Distributional Assumptions: A Systematic Evaluation of the Assumed Robustness of Predictive Mean Matching," Journal of Educational and Behavioral Statistics, , vol. 42(4), pages 371-404, August.
    6. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2023. "Handling Missing Data in Cross-Classified Multilevel Analyses: An Evaluation of Different Multiple Imputation Approaches," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 454-489, August.
    7. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2016. "Multiple Imputation of Multilevel Missing Data," SAGE Open, , vol. 6(4), pages 21582440166, October.
    8. Speidel, Matthias & Drechsler, Jörg & Jolani, Shahab, 2018. "R package hmi: a convenient tool for hierarchical multiple imputation and beyond," IAB-Discussion Paper 201816, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    9. Kristian Kleinke & Jost Reinecke & Cornelia Weins, 2021. "The development of delinquency during adolescence: a comparison of missing data techniques revisited," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(3), pages 877-895, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Miranda & Lars Vilhuber, 2016. "Using Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics," Working Papers 16-10, Center for Economic Studies, U.S. Census Bureau.
    2. Hang J. Kim & Jerome P. Reiter & Alan F. Karr, 2018. "Simultaneous edit-imputation and disclosure limitation for business establishment data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 63-82, January.
    3. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    4. Joshua Snoke & Gillian M. Raab & Beata Nowok & Chris Dibben & Aleksandra Slavkovic, 2018. "General and specific utility measures for synthetic data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 663-688, June.
    5. Loong Bronwyn & Rubin Donald B., 2017. "Multiply-Imputed Synthetic Data: Advice to the Imputer," Journal of Official Statistics, Sciendo, vol. 33(4), pages 1005-1019, December.
    6. Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodrígue, 2023. "An in-depth examination of requirements for disclosure risk assessment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
    7. Gerd Ronning, 2014. "Vertraulichkeit und Verfügbarkeit von Mikrodaten," IAW Discussion Papers 101, Institut für Angewandte Wirtschaftsforschung (IAW).
    8. Tatiana Komarova & Denis Nekipelov & Evgeny Yakovlev, 2018. "Identification, data combination, and the risk of disclosure," Quantitative Economics, Econometric Society, vol. 9(1), pages 395-440, March.
    9. James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
    10. Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic microdata to estimate small area statistics in the American Community Survey," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 341-368, June.
    11. Jahangir Alam M. & Dostie Benoit & Drechsler Jörg & Vilhuber Lars, 2020. "Applying data synthesis for longitudinal business data across three countries," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 212-236, August.
    12. Reiter, Jerome P. & Drechsler, Jörg, 2007. "Releasing multiply-imputed synthetic data generated in two stages to protect confidentiality," IAB-Discussion Paper 200720, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    13. Nowok, Beata & Raab, Gillian M. & Dibben, Chris, 2016. "synthpop: Bespoke Creation of Synthetic Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i11).
    14. Ian Lundberg & Arvind Narayanan & Karen Levy & Matthew Salganik, 2018. "Privacy, ethics, and data access: A case study of the Fragile Families Challenge," Working Papers wp18-09-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    15. Satkartar K. Kinney & Jerome P. Reiter & Javier Miranda, 2014. "Improving The Synthetic Longitudinal Business Database," Working Papers 14-12, Center for Economic Studies, U.S. Census Bureau.
    16. Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).
    17. Ferguson, Neil T. N. & Michaelsen, Maren M., 2013. "The Legacy of Conflict – Regional Deprivation and School Performance in Northern Ireland," Ruhr Economic Papers 419, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    18. Little Roderick J., 2013. "Discussion," Journal of Official Statistics, Sciendo, vol. 29(3), pages 363-366, June.
    19. Marquez, Jose & Qualter, Pamela & Petersen, Kimberly & Humphrey, Neil & Black, Louise, 2022. "In a lonely place: Neighbourhood effects on loneliness among adolescents," SocArXiv hzer5, Center for Open Science.
    20. Martin, Eisele & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," MPRA Paper 57666, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:40:y:2015:i:1:p:69-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.