IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0231.html
   My bibliography  Save this article

The copula based on multivariate t-distribution with vector of degrees of freedom

Author

Listed:
  • Balaev, Alexey

    () (Higher School of Economics, Moscow, Russia)

Abstract

In this paper we construct a copula based on the multivariate t-distribution with vector degrees of freedom parameter, which possesses significant advantages over the copula based on the standard multivariate t-distribution. We derive the standardized version of this copula, which is simpler from the computational viewpoint. As the application of the standardized t-copula with vector of degrees of freedom we consider VAR-MGARCH models. Such models are often used for multivariate analysis of asset returns on financial markets. We also propose an algorithm of simulating random vectors with multivariate t-distribution or t-copula with vector of degrees of freedom.

Suggested Citation

  • Balaev, Alexey, 2014. "The copula based on multivariate t-distribution with vector of degrees of freedom," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 90-110.
  • Handle: RePEc:ris:apltrx:0231
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2014_1_90-110.pdf
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Reboredo, Juan C., 2011. "How do crude oil prices co-move?: A copula approach," Energy Economics, Elsevier, vol. 33(5), pages 948-955, September.
    2. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    3. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions. III," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 24(4), pages 100-130.
    4. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
    5. Frahm, Gabriel & Junker, Markus & Szimayer, Alexander, 2003. "Elliptical copulas: applicability and limitations," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 275-286, July.
    6. Hörmann, Wolfgang & Sak, Halis, 2010. "t-Copula generation for control variates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 782-790.
    7. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    8. Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
    9. Trottini, Mario & Muralidhar, Krish & Sarathy, Rathindra, 2011. "Maintaining tail dependence in data shuffling using t copula," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 420-428, March.
    10. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    11. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    12. Шведов Алексей Сергеевич, 2011. "Робастная регрессия с применением t-распределения и EM-алгоритма," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 15(1), pages 68-87.
    13. Michael S. Smith & Quan Gan & Robert J. Kohn, 2012. "Modelling dependence using skew t copulas: Bayesian inference and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 500-522, April.
    14. Blagoveschensky, Yury, 2012. "Basics of copula’s theory," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 26(2), pages 113-130.
    15. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 22(2), pages 98-134.
    16. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions. II," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 23(3), pages 98-132.
    17. Chan, Joshua C.C. & Kroese, Dirk P., 2010. "Efficient estimation of large portfolio loss probabilities in t-copula models," European Journal of Operational Research, Elsevier, vol. 205(2), pages 361-367, September.
    18. Sak, Halis & Hörmann, Wolfgang & Leydold, Josef, 2010. "Efficient risk simulations for linear asset portfolios in the t-copula model," European Journal of Operational Research, Elsevier, vol. 202(3), pages 802-809, May.
    19. Chan, Yin & Li, Haijun, 2008. "Tail dependence for multivariate t -copulas and its monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 763-770, April.
    20. Huard, David & Evin, Guillaume & Favre, Anne-Catherine, 2006. "Bayesian copula selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 809-822, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    copula; multivariate t-distribution; vector of degrees of freedom; tail dependence; simulation algorithm.;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0231. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anatoly Peresetsky). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.