IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0303582.html
   My bibliography  Save this article

How can the digital economy reduce carbon emissions? Empirical evidence from China

Author

Listed:
  • Mingyue Chen
  • Xiaowen Wang
  • Zhenhua Zhang

Abstract

China is transitioning into the digital economy era. The advancement of the digital economy could offer a fresh mechanism to attain carbon peak and carbon neutrality objectives. Applications of the digital economy, such as smart energy management, intelligent transport systems, and digital agricultural technologies, have significantly reduced carbon emissions by optimizing resource use, reducing energy waste, and improving production efficiency. This research does so by devising a theoretical model that looks into the multi-faceted power of the digital economy under a two-sector paradigm. Utilising a panel model, a mediation effect model and a spatial Durbin model to assess the digital economy’s power on carbon emissions. This research has determined that the digital economy can significantly diminish carbon emissions, with green tech innovations and industrial transformation being key contributors. The spatial spillover effect was used for the digital economy to aid in lowering carbon emissions in adjacent districts and upgrading better environmental stewardship. The influence of the digital economy has better performance in lowering carbon emissions in mid-western China than in the eastern area. This paper deepens understanding of the drivers of low-carbon growth and the significance, mechanism and regional disparities of the digital economy’s effect on reducing carbon emissions. It offers valuable policy insights and guidance for globally achieving digital economy growth, reducing carbon emissions and reaching carbon peak and neutrality goals.

Suggested Citation

  • Mingyue Chen & Xiaowen Wang & Zhenhua Zhang, 2024. "How can the digital economy reduce carbon emissions? Empirical evidence from China," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-22, June.
  • Handle: RePEc:plo:pone00:0303582
    DOI: 10.1371/journal.pone.0303582
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303582
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0303582&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0303582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathan Nunn & Nancy Qian, 2014. "US Food Aid and Civil Conflict," American Economic Review, American Economic Association, vol. 104(6), pages 1630-1666, June.
    2. Benestad, Olav, 1994. "Energy needs and CO2 emissions Constructing a formula for just distributions," Energy Policy, Elsevier, vol. 22(9), pages 725-734, September.
    3. Muhammad Mohsin & Han Phoumin & Ik Joong Youn & Farhad Taghizadeh-Hesary, 2021. "Enhancing Energy and Environmental Efficiency in the Power Sectors: A Case Study of Singapore and China," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 23(03n04), pages 1-26, December.
    4. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    5. Zhang, Zhenhua & Zhang, Yunpeng & Zhao, Mingcheng & Muttarak, Raya & Feng, Yanchao, 2023. "What is the global causality among renewable energy consumption, financial development, and public health? New perspective of mineral energy substitution," Resources Policy, Elsevier, vol. 85(PA).
    6. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    7. Rudra P. Pradhan & Mak B. Arvin & Mahendhiran Nair & Sara E. Bennett, 2020. "Sustainable economic growth in the European Union: The role of ICT, venture capital, and innovation," Review of Financial Economics, John Wiley & Sons, vol. 38(1), pages 34-62, January.
    8. Ang, James B., 2009. "CO2 emissions, research and technology transfer in China," Ecological Economics, Elsevier, vol. 68(10), pages 2658-2665, August.
    9. Yang Liu & Yanlin Yang & Huihui Li & Kaiyang Zhong, 2022. "Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    10. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    11. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    12. Zhang, Zhenhua & Zhang, Guoxing & Su, Bin, 2022. "The spatial impacts of air pollution and socio-economic status on public health: Empirical evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    13. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    14. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
    15. Yu Hao & Yunxia Guo & Haitao Wu, 2022. "The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 403-424, January.
    16. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    17. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    18. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    19. Mardones, Cristian & Flores, Belén, 2018. "Effectiveness of a CO2 tax on industrial emissions," Energy Economics, Elsevier, vol. 71(C), pages 370-382.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    2. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    3. Li, Chengyou & Zheng, Chunji & Liu, Mengxun & Wang, Zeru, 2024. "Digital economy spillover on energy saving and emission reduction: Evidence from China," Energy, Elsevier, vol. 308(C).
    4. Guo, Qing & You, Wenlan, 2024. "How can the digital economy alleviate multidimensional energy poverty? —Empirical evidence of 21 prefecture-level cities in Guangdong Province," Energy, Elsevier, vol. 301(C).
    5. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    6. Xiujin Guo & Zhengming Wang, 2024. "How does the digital economy affect the green development of China’s industry?," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-21, September.
    7. Xiong, Su & Luo, Rong, 2023. "Investigating the relationship between digital trade, natural resources, energy transition, and green productivity: Moderating role of R&D investment," Resources Policy, Elsevier, vol. 86(PB).
    8. Qiaozhe Guo & Chengxuan Geng & Nengzhi Yao & Lexin Zhao, 2024. "Can digital infrastructure enhance economic efficiency? Evidence from China," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(2), pages 1729-1752, April.
    9. Lin Wang & Yugang He & Renhong Wu, 2024. "Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability," Energies, MDPI, vol. 17(4), pages 1-25, February.
    10. Wu, Haitao & Wang, Bingjie & Lu, Mingyue & Irfan, Muhammad & Miao, Xin & Luo, Shiyue & Hao, Yu, 2023. "The strategy to achieve zero‑carbon in agricultural sector: Does digitalization matter under the background of COP26 targets?," Energy Economics, Elsevier, vol. 126(C).
    11. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    12. Li Deng & Zhangqi Zhong, 2024. "The impact of digital infrastructure on carbon emissions: evidence from 284 cities in China," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-38, October.
    13. Dong Xue & Tongyang Liu & Xiaomin Li & Xiaolei Zhao, 2023. "Can the Digital Economy Accelerate “Carbon Neutrality”?—An Empirical Analysis Based on Provincial Data in China," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    14. Liu, Yajun & Zhang, Xiuwu & Shen, Yang, 2024. "Technology-driven carbon reduction: Analyzing the impact of digital technology on China's carbon emission and its mechanism," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    15. Yingzi Chen & Wanwan Yang & Yaqi Hu, 2022. "Internet Development, Consumption Upgrading and Carbon Emissions—An Empirical Study from China," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    16. Bei Wang & Hong Chen & Ruiqi Chen & Weiting Zeng & Lechuan Ye, 2023. "Does the Green Development of Cities Need High-Level Opening Up? A Quasi-Natural Experiment Based on China’s Pilot Free Trade Zone," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    17. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    18. Ziyu Meng & Wen-Bo Li & Chaofan Chen & Chenghua Guan, 2023. "Carbon Emission Reduction Effects of the Digital Economy: Mechanisms and Evidence from 282 Cities in China," Land, MDPI, vol. 12(4), pages 1-21, March.
    19. Wang, Lianghu & Shao, Jun, 2024. "The energy saving effects of digital infrastructure construction: Empirical evidence from Chinese industry," Energy, Elsevier, vol. 294(C).
    20. Jiachao Peng & Hanfei Chen & Lei Jia & Shuke Fu & Jiali Tian, 2023. "Impact of Digital Industrialization on the Energy Industry Supply Chain: Evidence from the Natural Gas Industry in China," Energies, MDPI, vol. 16(4), pages 1-32, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0303582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.