Author
Listed:
- Aritra Raut
- Abhisek Tiwari
- Subrata Das
- Sriparna Saha
- Anutosh Maitra
- Roshni Ramnani
- Shubhashis Sengupta
Abstract
Purpose: Existing task-oriented virtual agents can assist users with simple tasks like ticket booking, hotel reservations, etc. effectively and with high confidence. These virtual assistants, however, assume specific, predictable end-user behavior, such as predefined/servable objectives, which results in conversation failures in challenging situations, such as when goals are unavailable. Methodology: Inspired by the practice and its efficacy, we propose an end-to-end framework for task-oriented persuasive dialogue generation that combines pre-training and reinforcement learning for generating context-aware persuasive responses. We utilize four novel rewards to improve consistency and repetitiveness in generated responses. Additionally, a meta-learning strategy has also been utilized to make the model parameters better for domain adaptation. Furthermore, we also curate a personalized persuasive dialogue (PPD) corpus, which contains utterance-level intent, slot, sentiment, and persuasion strategy annotation. Findings: The obtained results and detailed analysis firmly establish the effectiveness of the proposed persuasive virtual assistant over traditional task-oriented virtual assistants. The proposed framework considerably increases the quality of dialogue generation in terms of consistency and repetitiveness. Additionally, our experiment with a few shot and zero-shot settings proves that our meta-learned model learns to quickly adopt new domains with a few or even zero no. of training epochs. It outperforms the non-meta-learning-based approaches keeping the base model constant. Originality: To the best of our knowledge, this is the first effort to improve a task-oriented virtual agent’s persuasiveness and domain adaptation.
Suggested Citation
Aritra Raut & Abhisek Tiwari & Subrata Das & Sriparna Saha & Anutosh Maitra & Roshni Ramnani & Shubhashis Sengupta, 2023.
"Reinforcing personalized persuasion in task-oriented virtual sales assistant,"
PLOS ONE, Public Library of Science, vol. 18(1), pages 1-27, January.
Handle:
RePEc:plo:pone00:0275750
DOI: 10.1371/journal.pone.0275750
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275750. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.