IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i11d10.1057_jors.2010.140.html
   My bibliography  Save this article

A DEA approach to derive individual lower and upper bounds for the technical and allocative components of the overall profit efficiency

Author

Listed:
  • J L Ruiz

    (Universidad Miguel Hernández)

  • I Sirvent

    (Universidad Miguel Hernández)

Abstract

In this paper, we propose a slack-based data envelopment analysis approach to be used in economic efficiency analyses when the objective is profit maximization. The focus is on the measurement of the technical component of the overall efficiency with the purpose of guaranteeing the achievement of the Pareto efficiency. As a result, we will be able to estimate correctly the allocative component in the sense that this latter only reflects the improvements that can be accomplished by reallocations along the Pareto-efficient frontier. Some new measures of technical and allocative efficiency in terms of both profit ratios and differences of profits are defined. We do not make any assumption on the way the technical efficiency is to be measured, that is, we do not use, for example, either a hyperbolic measure or a directional distance function, which allows us to extend this approach and derive individual lower and upper bounds for these efficiency components. To do it, we use novel models of minimum distance to the frontier. This broadens the range of possibilities for the explanation of the overall efficiency in terms of technical and allocative inefficiencies.

Suggested Citation

  • J L Ruiz & I Sirvent, 2011. "A DEA approach to derive individual lower and upper bounds for the technical and allocative components of the overall profit efficiency," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1907-1916, November.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:11:d:10.1057_jors.2010.140
    DOI: 10.1057/jors.2010.140
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.140
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Jean-Paul Chavas & Thomas L. Cox, 1999. "A Generalized Distance Function and the Analysis of Production Efficiency," Southern Economic Journal, John Wiley & Sons, vol. 66(2), pages 294-318, October.
    4. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    5. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    6. W. Briec, 1997. "A Graph-Type Extension of Farrell Technical Efficiency Measure," Journal of Productivity Analysis, Springer, vol. 8(1), pages 95-110, March.
    7. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    8. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    9. Silva Portela, Maria Conceicao A. & Thanassoulis, Emmanuel, 2005. "Profitability of a sample of Portuguese bank branches and its decomposition into technical and allocative components," European Journal of Operational Research, Elsevier, vol. 162(3), pages 850-866, May.
    10. Bogetoft, Peter & Fare, Rolf & Obel, Borge, 2006. "Allocative efficiency of technically inefficient production units," European Journal of Operational Research, Elsevier, vol. 168(2), pages 450-462, January.
    11. Asmild, Mette & Paradi, Joseph C. & Reese, David N. & Tam, Fai, 2007. "Measuring overall efficiency and effectiveness using DEA," European Journal of Operational Research, Elsevier, vol. 178(1), pages 305-321, April.
    12. Banker, Rajiv D & Maindiratta, Ajay, 1988. "Nonparametric Analysis of Technical and Allocative Efficiencies in Production," Econometrica, Econometric Society, vol. 56(6), pages 1315-1332, November.
    13. Rolf Fare & Shawna Grosskopf & William Weber, 2004. "The effect of risk-based capital requirements on profit efficiency in banking," Applied Economics, Taylor & Francis Journals, vol. 36(15), pages 1731-1743.
    14. Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
    15. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    2. Wen, Yao & An, Qingxian & Gong, Yeming & Wu, Pengkun, 2024. "Structural rearrangement of the network system from an efficiency perspective: A silver lining of profit improvement," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1001-1011.
    3. Pastor, Jesus T. & Zofío, José Luis & Aparicio, Juan & Pastor, D., 2023. "A general direct approach for decomposing profit inefficiency," Omega, Elsevier, vol. 119(C).
    4. Jose Zofio & Jesus Pastor & Juan Aparicio, 2013. "The directional profit efficiency measure: on why profit inefficiency is either technical or allocative," Journal of Productivity Analysis, Springer, vol. 40(3), pages 257-266, December.
    5. Somayeh Razipour-GhalehJough & Farhad Hosseinzadeh Lotfi & Gholamreza Jahanshahloo & Mohsen Rostamy-malkhalifeh & Hamid Sharafi, 2020. "Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 755-787, May.
    6. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Zofio & Jesus Pastor & Juan Aparicio, 2013. "The directional profit efficiency measure: on why profit inefficiency is either technical or allocative," Journal of Productivity Analysis, Springer, vol. 40(3), pages 257-266, December.
    2. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    3. Rolf Färe & Xinju He & Sungko Li & Valentin Zelenyuk, 2019. "A Unifying Framework for Farrell Profit Efficiency Measurement," Operations Research, INFORMS, vol. 67(1), pages 183-197, January.
    4. Aparicio, Juan & Pastor, Jesus T. & Ray, Subhash C., 2013. "An overall measure of technical inefficiency at the firm and at the industry level: The ‘lost profit on outlay’," European Journal of Operational Research, Elsevier, vol. 226(1), pages 154-162.
    5. Aparicio, Juan & Mahlberg, Bernhard & Pastor, Jesus T. & Sahoo, Biresh K., 2014. "Decomposing technical inefficiency using the principle of least action," European Journal of Operational Research, Elsevier, vol. 239(3), pages 776-785.
    6. M C A S Portela & E Thanassoulis, 2007. "Developing a decomposable measure of profit efficiency using DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 481-490, April.
    7. Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
    8. Juan Aparicio & José L. Zofío & Jesús T. Pastor, 2023. "Decomposing Economic Efficiency into Technical and Allocative Components: An Essential Property," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 98-129, April.
    9. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    10. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    11. Henriques, C.O. & Chavez, J.M. & Gouveia, M.C. & Marcenaro-Gutierrez, O.D., 2022. "Efficiency of secondary schools in Ecuador: A value based DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    12. Sekitani, Kazuyuki & Zhao, Yu, 2023. "Least-distance approach for efficiency analysis: A framework for nonlinear DEA models," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1296-1310.
    13. Viera Mendelová, 2021. "Decomposition of cost efficiency with adjustable prices: an application of data envelopment analysis," Operational Research, Springer, vol. 21(4), pages 2739-2770, December.
    14. Hirofumi Fukuyama & Hiroya Masaki & Kazuyuki Sekitani & Jianming Shi, 2014. "Distance optimization approach to ratio-form efficiency measures in data envelopment analysis," Journal of Productivity Analysis, Springer, vol. 42(2), pages 175-186, October.
    15. Silva Portela, Maria Conceicao A. & Thanassoulis, Emmanuel, 2005. "Profitability of a sample of Portuguese bank branches and its decomposition into technical and allocative components," European Journal of Operational Research, Elsevier, vol. 162(3), pages 850-866, May.
    16. Paradi, Joseph C. & Zhu, Haiyan & Edelstein, Barak, 2012. "Identifying managerial groups in a large Canadian bank branch network with a DEA approach," European Journal of Operational Research, Elsevier, vol. 219(1), pages 178-187.
    17. Fangqing Wei & Yanan Fu & Feng Yang & Chun Sun & Sheng Ang, 2023. "Closest target setting with minimum improvement costs considering demand and resource mismatches," Operational Research, Springer, vol. 23(3), pages 1-29, September.
    18. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    19. Subhash C. Ray, 2018. "Data Envelopment Analysis with Alternative Returns to Scale," Working papers 2018-20, University of Connecticut, Department of Economics.
    20. Sebastián Lozano & Gabriel Villa, 2010. "Gradual technical and scale efficiency improvement in DEA," Annals of Operations Research, Springer, vol. 173(1), pages 123-136, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:11:d:10.1057_jors.2010.140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.