IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A Generalized Distance Function and the Analysis of Production Efficiency

  • Jean-Paul Chavas
  • Thomas L. Cox

A generalization of Shephard’s distance functions is proposed, extending the usefulness of distance functions in economic analysis. Applications to efficiency measurements and productivity analysis are presented. New indexes of productivity and technical, allocative, and scale efficiency are proposed and analyzed. Interpretation of these indexes in terms of ray-average cost, ray-average revenue, and cost-to-revenue ratio is discussed.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Article provided by Southern Economic Association in its journal Southern Economic Journal.

Volume (Year): 66 (1999)
Issue (Month): 2 (October)
Pages: 294-318

in new window

Handle: RePEc:sej:ancoec:v:66:2:y:1999:p:294-318
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Banker, Rajiv D & Maindiratta, Ajay, 1988. "Nonparametric Analysis of Technical and Allocative Efficiencies in Production," Econometrica, Econometric Society, vol. 56(6), pages 1315-32, November.
  2. W. Briec, 1997. "A Graph-Type Extension of Farrell Technical Efficiency Measure," Journal of Productivity Analysis, Springer, vol. 8(1), pages 95-110, March.
  3. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
  4. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
  5. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
  6. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
  7. Forsund, Finn R. & Lovell, C. A. Knox & Schmidt, Peter, 1980. "A survey of frontier production functions and of their relationship to efficiency measurement," Journal of Econometrics, Elsevier, vol. 13(1), pages 5-25, May.
  8. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
  9. Lau, Lawrence J, 1972. "Profit Functions of Technologies with Multiple Inputs and Outputs," The Review of Economics and Statistics, MIT Press, vol. 54(3), pages 281-89, August.
  10. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
  11. Robert Russell, R., 1985. "Measures of technical efficiency," Journal of Economic Theory, Elsevier, vol. 35(1), pages 109-126, February.
  12. Diewert, W. E., 1976. "Exact and superlative index numbers," Journal of Econometrics, Elsevier, vol. 4(2), pages 115-145, May.
  13. Ray, Subhash C & Desli, Evangelia, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment," American Economic Review, American Economic Association, vol. 87(5), pages 1033-39, December.
  14. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
  15. Bauer, Paul W., 1990. "Recent developments in the econometric estimation of frontiers," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 39-56.
  16. Chambers, Robert G. & Chung, Y. & Fare, R., 1996. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Working Papers 197837, University of Maryland, Department of Agricultural and Resource Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sej:ancoec:v:66:2:y:1999:p:294-318. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Laura Razzolini)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.