IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v16y2013i1p165-199.html
   My bibliography  Save this article

Ecuaciones diferenciales y en diferencias aplicadas a los conceptos económicos y financieros || Differential and Difference Equations Applied to Economic and Financial Concepts

Author

Listed:
  • Tenorio Villal¢n, Angel F.

    (Departamento de Economía, M‚todos Cuantitativos e Historia Econ¢mica. Universidad Pablo de Olavide, de Sevilla (España))

  • Martín Caraballo, Ana M.

    (Departamento de Economía, Métodos Cuantitativos e Historia Económica. Universidad Pablo de Olavide, de Sevilla (España))

  • Paralera Morales, Concepción

    (Departamento de Economía, Métodos Cuantitativos e Historia Económica. Universidad Pablo de Olavide, de Sevilla (España))

  • Contreras Rubio, Ignacio

    (Departamento de Economía, Métodos Cuantitativos e Historia Económica. Universidad Pablo de Olavide, de Sevilla (España))

Abstract

Este trabajo versa sobre la utilidad de las ecuaciones diferenciales y las ecuaciones en diferencias finitas para la resolución de distintos problemas en el ámbito de la economía y la empresa. En Economía es frecuente estudiar la evolución de los valores de una misma variable en distintos instantes temporales. Si la variable “tiempo" se considera como algo continuo, la evolución se estudia mediante ecuaciones diferenciales. Sin embargo, si el “tiempo" es tratado de manera discreta, se utilizan entonces ecuaciones en diferencias finitas. Concretamente, nuestro objetivo no solo es exponer la evolución que han sufrido las nociones de ecuaciones diferenciales y ecuaciones en diferencias finitas sino también dar una visión (no exhaustiva) de sus múltiples aplicaciones a cuestiones relativas a fenómenos económicos y financieros. || This paper deals with the use of differential equations and finite difference methods for solving several problems in the field of Economics and Business Administration. Economics usually needs to study the evolution of the values which are taken by a given variable in different moments. If the time variable works in a continuous way, its evolution is studied by differential equations. Otherwise, time is a discrete variable and finite difference methods must be used. In addition, to expound the evolution of the notions of differential and difference equations, the goal of this paper is to show a general view (but not comprehensive) of their many applications for explaining economical and financial phenomena.

Suggested Citation

  • Tenorio Villal¢n, Angel F. & Martín Caraballo, Ana M. & Paralera Morales, Concepción & Contreras Rubio, Ignacio, 2013. "Ecuaciones diferenciales y en diferencias aplicadas a los conceptos económicos y financieros || Differential and Difference Equations Applied to Economic and Financial Concepts," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 16(1), pages 165-199, December.
  • Handle: RePEc:pab:rmcpee:v:16:y:2013:i:1:p:165-199
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/pdf/vol16/art83.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/bibtex.php?id=83
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vathana Ly Vath & Mohamed Mnif & Huyên Pham, 2007. "A model of optimal portfolio selection under liquidity risk and price impact," Finance and Stochastics, Springer, vol. 11(1), pages 51-90, January.
    2. Eckhard Platen & Martin Schweizer, 1998. "On Feedback Effects from Hedging Derivatives," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 67-84, January.
    3. Maurice Obstfeld & Kenneth S. Rogoff, 1996. "Foundations of International Macroeconomics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262150476, December.
    4. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    5. Ragnar Norberg, 1999. "A theory of bonus in life insurance," Finance and Stochastics, Springer, vol. 3(4), pages 373-390.
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(3), pages 233-240.
    9. Obstfeld, Maurice & Rogoff, Kenneth, 1995. "Exchange Rate Dynamics Redux," Journal of Political Economy, University of Chicago Press, vol. 103(3), pages 624-660, June.
    10. Yu-Ting Chen & Cheng Few Lee & Yuan-Chung Sheu, 2020. "An ODE Approach for the Expected Discounted Penalty at Ruin in a Jump-Diffusion Model," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 41, pages 1561-1598, World Scientific Publishing Co. Pte. Ltd..
    11. Antonelli, Fabio & Barucci, Emilio & Mancino, Maria Elvira, 2001. "Asset pricing with a forward-backward stochastic differential utility," Economics Letters, Elsevier, vol. 72(2), pages 151-157, August.
    12. Michael Woodford, 1998. "Control of the Public Debt: A Requirement for Price Stability?," International Economic Association Series, in: Guillermo Calvo & Mervyn King (ed.), The Debt Burden and its Consequences for Monetary Policy, chapter 5, pages 117-158, Palgrave Macmillan.
    13. Suren Basov, 2004. "Lie Groups of Partial Differential Equations and Their Application to theMultidimensional Screening Problems," Department of Economics - Working Papers Series 895, The University of Melbourne.
    14. Dornbusch, Rudiger, 1976. "Expectations and Exchange Rate Dynamics," Journal of Political Economy, University of Chicago Press, vol. 84(6), pages 1161-1176, December.
    15. Weil, Philippe, 1989. "Overlapping families of infinitely-lived agents," Journal of Public Economics, Elsevier, vol. 38(2), pages 183-198, March.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    17. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    18. M. Musiela & T. Zariphopoulou, 2011. "Initial Investment Choice And Optimal Future Allocations Under Time-Monotone Performance Criteria," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 61-81.
    19. J. P. Gould, 1968. "Adjustment Costs in the Theory of Investment of the Firm," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 35(1), pages 47-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    2. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    3. Simon Ellersgaard & Martin Tegnér, 2018. "Stochastic volatility for utility maximizers — A martingale approach," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-39, March.
    4. Bernardo D'Auria & Carlos Escudero, 2024. "Time evaluation of portfolio for asymmetrically informed traders," Papers 2410.16010, arXiv.org.
    5. Cavallo, Michele & Ghironi, Fabio, 2002. "Net foreign assets and the exchange rate: Redux revived," Journal of Monetary Economics, Elsevier, vol. 49(5), pages 1057-1097, July.
    6. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    7. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    8. Mikek, Peter, 2008. "Alternative monetary policies and fiscal regime in new EU members," Economic Systems, Elsevier, vol. 32(4), pages 335-353, December.
    9. Yuan-Hung Hsuku, 2007. "Dynamic consumption and asset allocation with derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 137-149.
    10. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457, Decembrie.
    11. Manuel Munoz Palma & Ezequiel Aviles Ochoa, 2014. "Addition Of The Fuzzy Logic Model To Black-Scholes, For Pricing Mexican Currency Options, La Incorporacion De La Logica Difusa Al Modelo Black-Scholes, Para La Determinacion Del Precio De La Opcion Ca," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 7(7), pages 55-73.
    12. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    13. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    14. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    15. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    17. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    18. John Y. Campbell & Luis M. Viceira & Joshua S. White, 2003. "Foreign Currency for Long-Term Investors," Economic Journal, Royal Economic Society, vol. 113(486), pages 1-25, March.
    19. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    20. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • A12 - General Economics and Teaching - - General Economics - - - Relation of Economics to Other Disciplines
    • A22 - General Economics and Teaching - - Economic Education and Teaching of Economics - - - Undergraduate
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:16:y:2013:i:1:p:165-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.