IDEAS home Printed from
   My bibliography  Save this article

A theory of bonus in life insurance


  • Ragnar Norberg

    () (Laboratory of Actuarial Mathematics, Universitetsparken 5, DK-2100 Copenhagen û, Denmark)


The issue of bonus in life insurance is considered in a model framework where the traditional set-up is extended by letting the experience basis (mortality, interest, etc.) be stochastic. A novel definition of the technical surplus on an insurance contract is proposed, and basic principles for its repayment as bonus are discussed. Making the experience basis an endogenous part of the model opens possibilities of model-based prognostication of future bonuses. Numerical illustrations are provided.

Suggested Citation

  • Ragnar Norberg, 1999. "A theory of bonus in life insurance," Finance and Stochastics, Springer, vol. 3(4), pages 373-390.
  • Handle: RePEc:spr:finsto:v:3:y:1999:i:4:p:373-390
    Note: received: January 1998; final version received: September 1998

    Download full text from publisher

    File URL:
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26.
    2. Carl Chiarella & Oh-Kang Kwon, 2000. "A Class of Heath-Jarrow-Morton Term Structure Models with Stochastic Volatility," Research Paper Series 34, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    4. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    5. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    6. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72.
    7. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    8. Björk, Tomas & Svensson, Lars, 1999. "On the Existence of Finite Dimensional Realizations for Nonlinear Forward Rate Models," SSE/EFI Working Paper Series in Economics and Finance 338, Stockholm School of Economics.
    9. Tomas BjÃrk & Andrea Gombani, 1999. "Minimal realizations of interest rate models," Finance and Stochastics, Springer, vol. 3(4), pages 413-432.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ninna Reitzel Jensen & Kristian Juul Schomacker, 2015. "A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk," Risks, MDPI, Open Access Journal, vol. 3(2), pages 1-36, June.
    2. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    3. Andreas Niemeyer, 2015. "Safety Margins for Systematic Biometric and Financial Risk in a Semi-Markov Life Insurance Framework," Risks, MDPI, Open Access Journal, vol. 3(1), pages 1-26, January.
    4. Jarner, Søren Fiig & Kronborg, Morten Tolver, 2016. "Entrance times of random walks: With applications to pension fund modeling," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 1-20.
    5. Thomas Møller, 2001. "Risk-minimizing hedging strategies for insurance payment processes," Finance and Stochastics, Springer, vol. 5(4), pages 419-446.
    6. Buchardt, Kristian, 2014. "Dependent interest and transition rates in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 167-179.
    7. Asmussen, Soren & Moller, Jakob R., 2003. "Risk comparisons of premium rules: optimality and a life insurance study," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 331-344, July.
    8. Tenorio Villalón, Ángel F. & Martín Caraballo, Ana M. & Paralera Morales, Concepción & Contreras Rubio, Ignacio, 2013. "Ecuaciones diferenciales y en diferencias aplicadas a los conceptos económicos y financieros || Differential and Difference Equations Applied to Economic and Financial Concepts," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 16(1), pages 165-199, December.
    9. Ragnar Norberg, 2013. "Optimal hedging of demographic risk in life insurance," Finance and Stochastics, Springer, vol. 17(1), pages 197-222, January.
    10. Francesca Biagini & Andreas Groll & Jan Widenmann, 2016. "Risk Minimization for Insurance Products via F-Doubly Stochastic Markov Chains," Risks, MDPI, Open Access Journal, vol. 4(3), pages 1-26, July.

    More about this item


    Safety margins; prospective reserves; retrospective reserves; stochastic interest; stochastic mortality; counting processes;

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:3:y:1999:i:4:p:373-390. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.