IDEAS home Printed from https://ideas.repec.org/a/oup/renvpo/v8y2014i2p270-289..html
   My bibliography  Save this article

Climate Engineering: Economic Considerations and Research Challenges

Author

Listed:
  • Gernot Klepper
  • Wilfried Rickels

Abstract

Climate engineering measures are designed to either reduce atmospheric carbon concentration (by growing trees or spreading iron in the ocean, for example) or directly influence the radiation reaching or leaving the earth (by injecting sulfur into the stratosphere or modifying cloud formations, for example) to compensate for greenhouse gas–induced warming. The former measures are termed carbon dioxide removal (CDR), which we characterize as a low-leverage causative approach, and the latter are termed radiation management (RM), which we characterize as a high-leverage symptomatic approach. There are similarities between CDR and emission control. Accordingly, benefit-cost analysis can be used to assess certain CDR measures. By contrast, high-leverage RM represents a genuinely new option in the climate change response portfolio, at first glance promising insurance against fat-tail climate change risks. However, the persistent intrinsic uncertainties of RM suggest that any cautious climate risk management approach should consider RM as a complement to (rather than a substitute for) emission control at best. Moreover, the complexity of the earth system imposes major limitations on the ability of research to reduce these uncertainties. Thus we argue that a research strategy is needed that focuses on increasing our basic understanding of the earth system and conducting comprehensive assessments of the risk(s) associated with both climate change and the deployment of climate engineering. (JEL: Q52, Q54, Q55)

Suggested Citation

  • Gernot Klepper & Wilfried Rickels, 2014. "Climate Engineering: Economic Considerations and Research Challenges," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 270-289.
  • Handle: RePEc:oup:renvpo:v:8:y:2014:i:2:p:270-289.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/reep/reu010
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emmerling, Johannes & Tavoni, Massimo, 2013. "Geoengineering and Abatement: A “flat” Relationship under Uncertainty," Climate Change and Sustainable Development 148917, Fondazione Eni Enrico Mattei (FEEM).
    2. Geoffrey Heal & Jisung Park, 2013. "Feeling the Heat: Temperature, Physiology & the Wealth of Nations," NBER Working Papers 19725, National Bureau of Economic Research, Inc.
    3. Douglas G. MacMartin & David W. Keith & Ben Kravitz & Ken Caldeira, 2013. "Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing," Nature Climate Change, Nature, vol. 3(4), pages 365-368, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Emmerling & Massimo Tavoni, 2018. "Climate Engineering and Abatement: A ‘flat’ Relationship Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 395-415, February.
    2. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    3. Heyen, Daniel & Horton, Joshua & Moreno-Cruz, Juan, 2019. "Strategic implications of counter-geoengineering: Clash or cooperation?," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 153-177.
    4. Scott Barrett, 2014. "Solar Geoengineering’s Brave New World: Thoughts on the Governance of an Unprecedented Technology," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 249-269.
    5. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    6. Michael Finus & Francesco Furini, 2022. "Global Climate Governance in the Light of Geoengineering: A Shot in the Dark?," Graz Economics Papers 2022-02, University of Graz, Department of Economics.
    7. Rickels, Wilfried & Quaas, Martin F. & Ricke, Katharine & Quaas, Johannes & Moreno-Cruz, Juan & Smulders, Sjak, 2020. "Who turns the global thermostat and by how much?," Energy Economics, Elsevier, vol. 91(C).
    8. Kniebes, Carola & Rehdanz, Katrin & Schmidt, Ulrich, 2014. "Validity of WTP measures under preference uncertainty," Kiel Working Papers 1972, Kiel Institute for the World Economy (IfW Kiel).
    9. Johannes Emmerling & Massimo Tavoni, 2017. "Quantifying Non-cooperative Climate Engineering," Working Papers 2017.58, Fondazione Eni Enrico Mattei.
    10. Carola Braun & Katrin Rehdanz & Ulrich Schmidt, 2016. "Validity of Willingness to Pay Measures under Preference Uncertainty," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    11. Nadine Mengis & David P. Keller & Wilfried Rickels & Martin Quaas & Andreas Oschlies, 2019. "Climate engineering–induced changes in correlations between Earth system variables—implications for appropriate indicator selection," Climatic Change, Springer, vol. 153(3), pages 305-322, April.
    12. Oschlies, Andreas & Klepper, Gernot, 2017. "Research for Assessment, not Deployment of Climate Engineering: The German Research Foundation's Priority Program SPP 1689," Open Access Publications from Kiel Institute for the World Economy 226373, Kiel Institute for the World Economy (IfW Kiel).
    13. Carola Braun & Katrin Rehdanz & Ulrich Schmidt, 2018. "Exploring public perception of environmental technology over time," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(1), pages 143-160, January.
    14. Wil Burns & Simon Nicholson, 2017. "Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(4), pages 527-534, December.
    15. Ryo Moriyama & Masahiro Sugiyama & Atsushi Kurosawa & Kooiti Masuda & Kazuhiro Tsuzuki & Yuki Ishimoto, 2017. "The cost of stratospheric climate engineering revisited," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1207-1228, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Emmerling & Vassiliki Manoussi & Anastasios Xepapadeas, 2016. "Climate Engineering under Deep Uncertainty and Heterogeneity," Working Papers 2016.52, Fondazione Eni Enrico Mattei.
    2. Maria Waldinger, 2015. "The effects of climate change on internal and international migration: implications for developing countries," GRI Working Papers 192, Grantham Research Institute on Climate Change and the Environment.
    3. Manoussi, Vassiliki & Xepapadeas, Anastasios, 2014. "Cooperation and Competition in Climate Change Policies: Mitigation and Climate Engineering when Countries are Asymmetric," Climate Change and Sustainable Development 190930, Fondazione Eni Enrico Mattei (FEEM).
    4. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    5. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    6. Geoffrey Heal & Jisung Park, 2016. "Editor's Choice Reflections—Temperature Stress and the Direct Impact of Climate Change: A Review of an Emerging Literature," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 347-362.
    7. Böhm, Hannes, 2020. "Physical climate change risks and the sovereign creditworthiness of emerging economies," IWH Discussion Papers 8/2020, Halle Institute for Economic Research (IWH).
    8. Jonathan Colmer, 2021. "Temperature, Labor Reallocation, and Industrial Production: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 13(4), pages 101-124, October.
    9. Surender Kumar & Madhu Khanna, 2019. "Temperature and production efficiency growth: empirical evidence," Climatic Change, Springer, vol. 156(1), pages 209-229, September.
    10. Achim Ahrens, 2015. "Civil conflicts in Africa: Climate, economic shocks, nighttime lights and spill-over effects," SEEC Discussion Papers 1501, Spatial Economics and Econometrics Centre, Heriot Watt University.
    11. Kussel, Gerhard, 2016. "Adaptation to climate variability: Evidence from German households," Ruhr Economic Papers 625, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    12. Geoffrey Heal, 2017. "The Economics of the Climate," Journal of Economic Literature, American Economic Association, vol. 55(3), pages 1046-1063, September.
    13. Dennis Wesselbaum, 2021. "Does Temperature affect Income?," Economics Bulletin, AccessEcon, vol. 41(1), pages 18-27.
    14. Song, Malin & Wang, Jianlin & Zhao, Jiajia, 2023. "Effects of rising and extreme temperatures on production factor efficiency: Evidence from China's cities," International Journal of Production Economics, Elsevier, vol. 260(C).
    15. Maya Moore & Dennis Wesselbaum, 2023. "Climatic factors as drivers of migration: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 2955-2975, April.
    16. Xiaojia Bao & Qingliang Fan, 2020. "The impact of temperature on gaming productivity: evidence from online games," Empirical Economics, Springer, vol. 58(2), pages 835-867, February.
    17. Arbex, Marcelo & Batu, Michael, 2020. "What if people value nature? Climate change and welfare costs," Resource and Energy Economics, Elsevier, vol. 61(C).
    18. Fisher, Anthony, 2014. "Climate Science and Climate Economics," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt746627gz, Department of Agricultural & Resource Economics, UC Berkeley.
    19. Ahrens Achim, 2015. "Civil Conflicts, Economic Shocks and Night-time Lights," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 21(4), pages 433-444, December.
    20. Khara D. Grieger & Tyler Felgenhauer & Ortwin Renn & Jonathan Wiener & Mark Borsuk, 2019. "Emerging risk governance for stratospheric aerosol injection as a climate management technology," Environment Systems and Decisions, Springer, vol. 39(4), pages 371-382, December.

    More about this item

    JEL classification:

    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:renvpo:v:8:y:2014:i:2:p:270-289.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aereeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.