IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32656-8.html
   My bibliography  Save this article

Co-benefits of CO2 emission reduction from China’s clean air actions between 2013-2020

Author

Listed:
  • Qinren Shi

    (Tsinghua University
    Tsinghua University)

  • Bo Zheng

    (Tsinghua University)

  • Yixuan Zheng

    (Tsinghua University
    Chinese Academy of Environmental Planning)

  • Dan Tong

    (Tsinghua University)

  • Yang Liu

    (Tsinghua University)

  • Hanchen Ma

    (Tsinghua University)

  • Chaopeng Hong

    (Tsinghua University)

  • Guannan Geng

    (Tsinghua University)

  • Dabo Guan

    (Tsinghua University)

  • Kebin He

    (Tsinghua University
    Tsinghua University)

  • Qiang Zhang

    (Tsinghua University)

Abstract

Climate change mitigation measures can yield substantial air quality improvements while emerging clean air measures in developing countries can also lead to CO2 emission mitigation co-benefits by affecting the local energy system. Here, we evaluate the effect of China’s stringent clean air actions on its energy use and CO2 emissions from 2013-2020. We find that widespread phase-out and upgrades of outdated, polluting, and inefficient combustion facilities during clean air actions have promoted the transformation of the country’s energy system. The co-benefits of China’s clean air measures far outweigh the additional CO2 emissions of end-of-pipe devices, realizing a net accumulative reduction of 2.43 Gt CO2 from 2013-2020, exceeding the accumulated CO2 emission increase in China (2.03 Gt CO2) during the same period. Our study indicates that China’s efforts to tackle air pollution induce considerable climate benefit, and measures with remarkable CO2 reduction co-benefits deserve further attention in future policy design.

Suggested Citation

  • Qinren Shi & Bo Zheng & Yixuan Zheng & Dan Tong & Yang Liu & Hanchen Ma & Chaopeng Hong & Guannan Geng & Dabo Guan & Kebin He & Qiang Zhang, 2022. "Co-benefits of CO2 emission reduction from China’s clean air actions between 2013-2020," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32656-8
    DOI: 10.1038/s41467-022-32656-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32656-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32656-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Han & Chen, Wenying, 2019. "Potential impact of shifting coal to gas and electricity for building sectors in 28 major northern cities of China," Applied Energy, Elsevier, vol. 236(C), pages 1049-1061.
    2. Michael Jakob & Jan Christoph Steckel & Stephan Klasen & Jann Lay & Nicole Grunewald & Inmaculada Martínez-Zarzoso & Sebastian Renner & Ottmar Edenhofer, 2014. "Feasible mitigation actions in developing countries," Nature Climate Change, Nature, vol. 4(11), pages 961-968, November.
    3. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    4. Chaopeng Hong & Qiang Zhang & Yang Zhang & Steven J. Davis & Xin Zhang & Dan Tong & Dabo Guan & Zhu Liu & Kebin He, 2020. "Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality," Nature Climate Change, Nature, vol. 10(9), pages 845-850, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
    2. Run Sun & Kun Yang & Zongqi Peng & Meie Pan & Danni Su & Mingfeng Zhang & Lusha Ma & Jingcong Ma & Tao Li, 2024. "Spatial-Temporal Evolution of Sales Volume of New Energy Vehicles in China and Analysis of Influencing Factors," Sustainability, MDPI, vol. 16(24), pages 1-15, December.
    3. Yongtong Li & Lifeng Wu, 2025. "Impact of carbon emissions and GDP on air quality: forecast from 20 regions of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 7063-7089, March.
    4. Ying Pan & Ke Shi & Zhongxu Zhao & Yao Li & Junxi Wu, 2024. "The effects of China’s poverty eradication program on sustainability and inequality," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Liwen & Dong, Hongwei & Xiao, Chiwei & Feng, Zhiming & Yan, Jianzhong, 2024. "Energy consumption, structural transformation and related carbon dioxide emissions of rural households on the Tibetan plateau," Energy, Elsevier, vol. 308(C).
    2. Chong Wei, 2024. "Historical trend and drivers of China’s CO2 emissions from 2000 to 2020," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 2225-2244, January.
    3. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    4. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    5. Li, Ke & Yuan, Weihong & Li, Jianglong & Ai, Hongshan, 2021. "Effects of time-dependent environmental regulations on air pollution: Evidence from the Changsha-Zhuzhou-Xiangtan region, China," World Development, Elsevier, vol. 138(C).
    6. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    7. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    8. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    9. Li, Penghui & He, Chunyang & Huang, Qingxu & Wang, Yida & Duan, Xiaoyu, 2024. "Metacoupling flow of embodied carbon in resource-based cities: A case study of Hohhot-Baotou-Ordos-Yulin urban agglomeration in China," Energy, Elsevier, vol. 313(C).
    10. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    11. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    12. Chen, Lu & Li, Xin & Liu, Wei & Kang, Xinyu & Zhao, Yifei & Wang, Minxi, 2024. "System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system," Applied Energy, Elsevier, vol. 371(C).
    13. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    14. Chunli Zhou & Yuze Tang & Deyan Zhu & Zhiwei Cui, 2024. "Tracking the Carbon Emissions Using Electricity Big Data: A Case Study of the Metal Smelting Industry," Energies, MDPI, vol. 17(3), pages 1-19, January.
    15. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    16. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    17. Shuangzhi Li & Xiaoling Zhang & Zhongci Deng & Xiaokang Liu & Ruoou Yang & Lihao Yin, 2023. "Identifying the Critical Supply Chains for Black Carbon and CO 2 in the Sichuan Urban Agglomeration of Southwest China," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    18. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    19. Zhao, Mengxue & Chan, Hon S., 2024. "Balancing through agglomeration: A third path to sustainable development between common prosperity and carbon neutrality in China," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    20. Wei Wei & Haibo Du & Libang Ma & Chunfang Liu & Junju Zhou, 2024. "Spatiotemporal dynamics of CO2 emissions using nighttime light data: a comparative analysis between the Yellow and Yangtze River Basins in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 1081-1102, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32656-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.