IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223017681.html
   My bibliography  Save this article

Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification

Author

Listed:
  • Qin, Tao
  • Lu, Qiuxiang
  • Xiang, Hao
  • Luo, Xiulin
  • Shenfu, Yuan

Abstract

Coal catalytic pyrolysis has been applied in the clean and efficient utilization of low-rank coal to obtain combustible gases and high value-added chemicals. Herein, Ni–Co–Ca catalysts were added into coal through impregnation for catalytic pyrolysis of Yunnan lignite and the char steam gasification. The H2 production reached 3.24 mmol/g of coal and the gas conversion was 27.84% of the coal pyrolysis under 5Ni–5Co–1Ca. The char conversion reached 98.21% and the H2 production was 90.68 mmol/g of char steam gasification. Ni and Co could promote coal catalytic pyrolysis by cracking the C–H and C–C bonds. The formation of Ni–Co alloy could prevent catalysts inactivation due to the metal oxidation, lattice distortion and carbon deposition. Density functional theory (DFT) calculations indicated that the electron transfer from Co to Ni has been improved due to the Ca promoting effect, enhancing Ni catalytic activity and promoting coal pyrolysis for more small gaseous molecules. Ca could endow char with abundant pore structure, improving the irregular degree of char crystallite structure, which was attributed to the char gasification at high temperature to obtain H2. This study provided guidance to modulate pyrolysis products distribution by regulating catalysts properties.

Suggested Citation

  • Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017681
    DOI: 10.1016/j.energy.2023.128374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017681
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Qiuxiang & Shenfu, Yuan & Chen, Xin & Li, Kuo & Qian, Tao & Zhao, Yanwei & Meng, Lingshuai & Xie, Xiaoguang & Zhao, Yan & Zhou, Yujie, 2023. "The effect of reaction condition on catalytic cracking of wheat straw pyrolysis volatiles over char-based Fe–Ni–Ca catalyst," Energy, Elsevier, vol. 263(PB).
    2. Lei, Zhao & Liang, Qijun & Ling, Qiang & Cui, Ping & Zhao, Zhigang, 2023. "Investigating the reaction mechanism of light tar for Shenfu bituminous coal pyrolysis," Energy, Elsevier, vol. 263(PB).
    3. Zhao, Lu-Tao & Liu, Zhao-Ting & Cheng, Lei, 2021. "How will China's coal industry develop in the future? A quantitative analysis with policy implications," Energy, Elsevier, vol. 235(C).
    4. Qinren Shi & Bo Zheng & Yixuan Zheng & Dan Tong & Yang Liu & Hanchen Ma & Chaopeng Hong & Guannan Geng & Dabo Guan & Kebin He & Qiang Zhang, 2022. "Co-benefits of CO2 emission reduction from China’s clean air actions between 2013-2020," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Li, Zhenbao & Wang, Fengshuang & Wei, Yongqiao & Liang, Rui & Gao, Wei & Zhang, Xiaofeng, 2022. "Thermokinetic analysis of low-rank bituminous coal during low-temperature oxidation: A case study of the Jurassic coal in Shendong coalfield, Ordos Basin, China," Energy, Elsevier, vol. 244(PB).
    6. He, Renze & Deng, Jin & Deng, Xiaoling & Xie, Xiaoguang & Li, Yun & Yuan, Shenfu, 2022. "Effects of alkali and alkaline earth metals of inherent minerals on Fe-catalyzed coal pyrolysis," Energy, Elsevier, vol. 238(PC).
    7. Du, Shaohua & Wang, Jiahao & Yu, Yaxiong & Zhou, Qiang, 2023. "Coarse-grained CFD-DEM simulation of coal and biomass co-gasification process in a fluidized bed reactor: Effects of particle size distribution and operating pressure," Renewable Energy, Elsevier, vol. 202(C), pages 483-498.
    8. Zhang, Chengzhi & Zhang, Xing & Wu, Jingfeng & Zhu, Lingjun & Wang, Shurong, 2022. "Hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over Ni–Co alloy coupled with oxophilic NbOx," Applied Energy, Elsevier, vol. 328(C).
    9. Ban, Yanpeng & Jin, Lijun & Wang, Kechao & Li, Yang & Yang, He & Hu, Haoquan, 2023. "Catalytic effect of industrial waste carbide slag on pyrolysis of low-rank coal," Energy, Elsevier, vol. 265(C).
    10. He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Wu, Yujian & Wang, Haoyu & Li, Haoyang & Han, Xue & Zhang, Mingyuan & Sun, Yan & Fan, Xudong & Tu, Ren & Zeng, Yimin & Xu, Chunbao Charles & Xu, Xiwei, 2022. "Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review," Renewable Energy, Elsevier, vol. 196(C), pages 462-481.
    12. Li, Moshan & Lu, Yiyu & Hu, Erfeng & Yang, Yang & Tian, Yishui & Dai, Chongyang & Li, Chenhao, 2023. "Fast co-pyrolysis characteristics of high-alkali coal and polyethylene using infrared rapid heating," Energy, Elsevier, vol. 266(C).
    13. Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Zhonghui & Zhang, Yongmin & Yang, Fu & Liu, Meijuan & Wang, Zhendong & Zhao, Youzhi & Ma, Li, 2024. "Research on controllable shock wave technology for in-situ development of tar-rich coal," Energy, Elsevier, vol. 288(C).
    2. Jiang, Xu & Xu, Jun & He, Qichen & Wang, Cong & Jiang, Long & Xu, Kai & Wang, Yi & Su, Sheng & Hu, Song & Du, Zhenyi & Xiang, Jun, 2023. "A study of the relationships between coal heterogeneous chemical structure and pyrolysis behaviours: Mechanism and predicting model," Energy, Elsevier, vol. 282(C).
    3. Xu, Tong & Wang, Chunbo & Hong, Dikun, 2023. "Programmable heating and quenching for enhancing coal pyrolysis tar yield: A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 285(C).
    4. He, Qing & Cheng, Chen & Zhang, Xinsha & Guo, Qinghua & Ding, Lu & Raheem, Abdul & Yu, Guangsuo, 2022. "Insight into structural evolution and detailed non-isothermal kinetic analysis for coal pyrolysis," Energy, Elsevier, vol. 244(PB).
    5. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Drewniak, Sabina & Werle, Sebastian, 2023. "Oxidative liquefaction as an alternative method of recycling and the pyrolysis kinetics of wind turbine blades," Energy, Elsevier, vol. 278(PB).
    6. Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
    7. Jinling Song & Chuyang Tang & Xinyuan An & Yi Wang & Shankun Zhou & Chunhong Huang, 2022. "Catalytic Pyrolysis of Sawdust with Desulfurized Fly Ash for Pyrolysis Gas Upgrading," IJERPH, MDPI, vol. 19(23), pages 1-11, November.
    8. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    9. Li, Dun & Gao, Jianmin & Zhao, Ziqi & Du, Qian & Dong, Heming & Cui, Zhaoyang, 2022. "Effects of iron on coal pyrolysis-derived soot formation," Energy, Elsevier, vol. 249(C).
    10. Xu, Yizhen & Qin, Botao & Shi, Quanlin & Hao, Mingyue & Shao, Xu & Jiang, Zhe & Ma, Zujie, 2023. "Study on the preparation and properties of colloidal gas foam concrete to prevent spontaneous combustion of coal," Energy, Elsevier, vol. 283(C).
    11. Yao, Qiuxiang & He, Lei & Ma, Duo & Wang, Linyang & Ma, Li & Chen, Huiyong & Hao, Qingqing & Sun, Ming, 2024. "Cracking of heavy-inferior oils with different alkane-aromatic ratios to aromatics over MFI zeolites:Structure-activity relationship derived by machine learning," Energy, Elsevier, vol. 289(C).
    12. Yang, Panxi & Guo, Wei & Yu, Zunyi & Gao, Kun & Jing, Wang & Jie, Zhang & Shang, Jianxuan & Yang, Bolun & Wu, Zhiqiang, 2023. "Modified network kinetic model for coal pyrolysis with high-value products and low carbon emissions11The short version of the paper was presented at ICAE2022, Bochum, Germany, Aug 8–11, 2022. This pap," Applied Energy, Elsevier, vol. 351(C).
    13. Ying Pan & Ke Shi & Zhongxu Zhao & Yao Li & Junxi Wu, 2024. "The effects of China’s poverty eradication program on sustainability and inequality," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    14. Ma, Liyang & Zhang, Lan & Wang, Deming & Xin, Haihui & Ma, Qiulin, 2023. "Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: A reactive force field molecular dynamics simulation," Energy, Elsevier, vol. 283(C).
    15. Liu, Qiqi & Liu, Chuang & Ma, Jiayu & Liu, Zhenyi & Sun, Lulu, 2024. "Comprehensive evaluation of low-temperature oxidation characteristics of low-rank bituminous coal and oil shale," Energy, Elsevier, vol. 294(C).
    16. Li, Longzhi & Cai, Dongqiang & Zhang, Lianjie & Zhang, Yue & Zhao, Zhiyang & Zhang, Zhonglei & Sun, Jifu & Tan, Yongdong & Zou, Guifu, 2023. "Synergistic effects during pyrolysis of binary mixtures of biomass components using microwave-assisted heating coupled with iron base tip-metal," Renewable Energy, Elsevier, vol. 203(C), pages 312-322.
    17. Cueva Zepeda, Lolita & Griffin, Gregory & Shah, Kalpit & Al-Waili, Ibrahim & Parthasarathy, Rajarathinam, 2023. "Energy potential, flow characteristics and stability of water and alcohol-based rice-straw biochar slurry fuel," Renewable Energy, Elsevier, vol. 207(C), pages 60-72.
    18. Chen, Tao & Sjöblom, Jonas & Ström, Henrik, 2022. "Numerical investigations of soot generation during wood-log combustion," Applied Energy, Elsevier, vol. 325(C).
    19. Alejandro Lyons Cerón & Alar Konist & Heidi Lees & Oliver Järvik, 2021. "Effect of Woody Biomass Gasification Process Conditions on the Composition of the Producer Gas," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    20. Lin, Pengmusen & Yu, Xinyu & Wang, Han & Ming, Hui & Ge, Shengbo & Liu, Fang & Peng, Haowei & Sonne, Christian & Zhang, Libo, 2023. "Life cycle assessment of bio-oil prepared from low-temperature hydrothermal oxide-catalyzed cotton stalk," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.