Investigating the reaction mechanism of light tar for Shenfu bituminous coal pyrolysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125731
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liang, Wang & Ning, Xiaojun & Wang, Guangwei & Zhang, Jianliang & Li, Rongpeng & Chang, Weiwei & Wang, Chuan, 2021. "Influence mechanism and kinetic analysis of co-gasification of biomass char and semi-coke," Renewable Energy, Elsevier, vol. 163(C), pages 331-341.
- Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
- Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
- Xu, Tong & Wang, Chunbo & Hong, Dikun, 2023. "Programmable heating and quenching for enhancing coal pyrolysis tar yield: A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 285(C).
- Ma, Liyang & Zhang, Lan & Wang, Deming & Xin, Haihui & Ma, Qiulin, 2023. "Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: A reactive force field molecular dynamics simulation," Energy, Elsevier, vol. 283(C).
- Yang, Panxi & Guo, Wei & Yu, Zunyi & Gao, Kun & Jing, Wang & Jie, Zhang & Shang, Jianxuan & Yang, Bolun & Wu, Zhiqiang, 2023. "Modified network kinetic model for coal pyrolysis with high-value products and low carbon emissions11The short version of the paper was presented at ICAE2022, Bochum, Germany, Aug 8–11, 2022. This pap," Applied Energy, Elsevier, vol. 351(C).
- Yang, Yu & Kai, Reo & Watanabe, Hiroaki, 2024. "Reaction mechanism and light gas conversion in pyrolysis and oxidation of dimethyl ether (DME): A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 295(C).
- Jiang, Xu & Xu, Jun & He, Qichen & Wang, Cong & Jiang, Long & Xu, Kai & Wang, Yi & Su, Sheng & Hu, Song & Du, Zhenyi & Xiang, Jun, 2023. "A study of the relationships between coal heterogeneous chemical structure and pyrolysis behaviours: Mechanism and predicting model," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
- Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
- Li, Guang & Chang, Yuxue & Liu, Tao & Yu, Zhongliang & Liu, Zheyu & Liu, Fan & Ma, Shuqi & Weng, Yujing & Zhang, Yulong, 2020. "Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process," Energy, Elsevier, vol. 206(C).
- Wang, Xudong & Shao, Yali & Jin, Baosheng, 2021. "Thermodynamic evaluation and modelling of an auto-thermal hybrid system of chemical looping combustion and air separation for power generation coupling with CO2 cycles," Energy, Elsevier, vol. 236(C).
- Liang, Wang & Wang, Guangwei & Jiao, Kexin & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Li, Jinhua & Wang, Chuan, 2021. "Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization," Renewable Energy, Elsevier, vol. 173(C), pages 318-328.
- Liang, Wang & Jiang, Chunhe & Wang, Guangwei & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Xu, Runsheng & Wang, Peng & Ye, Lian & Li, Jinhua & Wang, Chuan, 2022. "Research on the co-combustion characteristics and kinetics of agricultural waste hydrochar and anthracite," Renewable Energy, Elsevier, vol. 194(C), pages 1119-1130.
- Liu, Rongtang & Liu, Ming & Zhao, Yongliang & Ma, Yuegeng & Yan, Junjie, 2021. "Thermodynamic study of a novel lignite poly-generation system driven by solar energy," Energy, Elsevier, vol. 214(C).
- Haolie li, & Shen, Shuguang & Shi, Zhaoyi & Shan, Weiwei & Chang, Sujie & Guo, Chenyuan & Bai, Yonghui & Yan, Lunjing & li, Fan, 2019. "Effect of the upstream gas on the evolved coal gas in the dry distillation zone of the fixed bed gasifier," Energy, Elsevier, vol. 180(C), pages 421-428.
- Wang, Lulu & Feng, Xuan & Shen, Laihong & Jiang, Shouxi & Gu, Haiming, 2019. "Carbon and sulfur conversion of petroleum coke in the chemical looping gasification process," Energy, Elsevier, vol. 179(C), pages 1205-1216.
- Du, Wang & Ma, Liping & Pan, Qinghuan & Dai, Quxiu & Zhang, Mi & Yin, Xia & Xiong, Xiong & Zhang, Wei, 2023. "Full-loop CFD simulation of lignite Chemical Looping Gasification with phosphogypsum as oxygen carrier using a circulating fluidized bed," Energy, Elsevier, vol. 262(PA).
- Zhang, Juan & Sun, Lulu & Zhong, Yu & Ding, Yanming & Du, Wenzhou & Lu, Kaihua & Jia, Jia, 2022. "Kinetic model and parameters optimization for Tangkou bituminous coal by the bi-Gaussian function and Shuffled Complex Evolution," Energy, Elsevier, vol. 243(C).
- Li, Zhenwei & Xu, Hongpeng & Yang, Wenming & Wu, Shaohua, 2021. "Numerical study on the effective utilization of high sulfur petroleum coke for syngas production via chemical looping gasification," Energy, Elsevier, vol. 235(C).
- Baath, Yuvraj Singh & Nikrityuk, Petr A. & Gupta, Rajender, 2022. "Experimental and numerical verifications of biochar gasification kinetics using TGA," Renewable Energy, Elsevier, vol. 185(C), pages 717-733.
- Wang, Chaowei & Wang, Chang'an & Luo, Maoyun & Zhao, Lin & Wang, Pengqian & Hou, Yujie & Zhao, Pengbo & Che, Defu, 2023. "Co-gasification behaviors of various coal-based solid fuels blends at initial stage of oxy-fuel Co-combustion," Energy, Elsevier, vol. 271(C).
- Huo, Hailong & Liu, Xunliang & Wen, Zhi & Lou, Guofeng & Dou, Ruifeng & Su, Fuyong & Zhou, Wenning & Jiang, Zeyi, 2021. "Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment," Energy, Elsevier, vol. 228(C).
More about this item
Keywords
ReaxFF simulation; Coal pyrolysis; Light tar reaction mechanism; Py-GC/MS; TGA-FTIR;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026172. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.