IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221016431.html
   My bibliography  Save this article

Numerical study on the effective utilization of high sulfur petroleum coke for syngas production via chemical looping gasification

Author

Listed:
  • Li, Zhenwei
  • Xu, Hongpeng
  • Yang, Wenming
  • Wu, Shaohua

Abstract

This study aims at investigating the syngas production and sulfur conversion mechanisms during the chemical looping gasification (CLG) process with the industrial by-product petroleum coke (petcoke) as fuel, which is beneficial to the waste-to-energy process. The chemical kinetics including petroleum coke decomposition, char gasification, oxygen carrier reduction and the sulfur species reaction model are incorporated into the dynamic model to simulate a CLG fluidized bed reactor with iron-based oxygen carriers. Results suggest that the model is able to well predict the time-varying concentrations of the syngas products and sulfur-containing gases. The near-zero COS emission from the reactor outlet confirms the previous experimental results and contributes additional evidence that the presence of steam enhances the conversion of COS to H2S. The effects of temperature, steam and N2 flow rates on the petcoke CLG performance are also evaluated. The results indicate that higher temperature and steam flow rate lead to an improvement in the conversion of carbon and sulfur in petroleum coke. However, further increasing the gas flow rates may result in a more intense fluidization state, which might significantly facilitate the OC reduction reactions with flammable gases, thus increasing the CO2 and SO2 production in the petcoke CLG process.

Suggested Citation

  • Li, Zhenwei & Xu, Hongpeng & Yang, Wenming & Wu, Shaohua, 2021. "Numerical study on the effective utilization of high sulfur petroleum coke for syngas production via chemical looping gasification," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016431
    DOI: 10.1016/j.energy.2021.121395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lulu & Feng, Xuan & Shen, Laihong & Jiang, Shouxi & Gu, Haiming, 2019. "Carbon and sulfur conversion of petroleum coke in the chemical looping gasification process," Energy, Elsevier, vol. 179(C), pages 1205-1216.
    2. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    3. Yin, Weijie & Wang, Shuai & Zhang, Kai & He, Yurong, 2020. "Numerical investigation of in situ gasification chemical looping combustion of biomass in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 151(C), pages 216-225.
    4. Khojasteh Salkuyeh, Yaser & Adams, Thomas A., 2015. "Integrated petroleum coke and natural gas polygeneration process with zero carbon emissions," Energy, Elsevier, vol. 91(C), pages 479-490.
    5. Zhan, Xiuli & Zhou, ZhiJie & Wang, Fuchen, 2010. "Catalytic effect of black liquor on the gasification reactivity of petroleum coke," Applied Energy, Elsevier, vol. 87(5), pages 1710-1715, May.
    6. Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
    7. Wang, Guangwei & Zhang, Jianliang & Zhang, Guohua & Ning, Xiaojun & Li, Xinyu & Liu, Zhengjian & Guo, Jian, 2017. "Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends," Energy, Elsevier, vol. 131(C), pages 27-40.
    8. Alobaid, Falah & Ohlemüller, Peter & Ströhle, Jochen & Epple, Bernd, 2015. "Extended Euler–Euler model for the simulation of a 1 MWth chemical–looping pilot plant," Energy, Elsevier, vol. 93(P2), pages 2395-2405.
    9. Zeng, Jimin & Xiao, Rui & Zhang, Shuai & Zhang, Huiyan & Zeng, Dewang & Qiu, Yu & Ma, Zhong, 2018. "Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor," Applied Energy, Elsevier, vol. 229(C), pages 404-412.
    10. Tremel, Alexander & Haselsteiner, Thomas & Kunze, Christian & Spliethoff, Hartmut, 2012. "Experimental investigation of high temperature and high pressure coal gasification," Applied Energy, Elsevier, vol. 92(C), pages 279-285.
    11. He, Qing & Yu, Junqin & Song, Xudong & Ding, Lu & Wei, Juntao & Yu, Guangsuo, 2020. "Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Qinghuan & Ma, Liping & Du, Wang & Yang, Jie & Ao, Ran & Yin, Xia & Qing, Sancheng, 2022. "Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag," Energy, Elsevier, vol. 241(C).
    2. Gao, Zhuwei & Li, Chengxin & Qi, Xinyu & Wei, Yaodong & Liu, Zhongxin, 2022. "Flow analysis on carbonaceous deposition of heavy oil droplets and catalyst particles for coking formation process," Energy, Elsevier, vol. 260(C).
    3. Du, Wang & Ma, Liping & Pan, Qinghuan & Dai, Quxiu & Zhang, Mi & Yin, Xia & Xiong, Xiong & Zhang, Wei, 2023. "Full-loop CFD simulation of lignite Chemical Looping Gasification with phosphogypsum as oxygen carrier using a circulating fluidized bed," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lulu & Feng, Xuan & Shen, Laihong & Jiang, Shouxi & Gu, Haiming, 2019. "Carbon and sulfur conversion of petroleum coke in the chemical looping gasification process," Energy, Elsevier, vol. 179(C), pages 1205-1216.
    2. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    3. He, Qing & Yu, Junqin & Song, Xudong & Ding, Lu & Wei, Juntao & Yu, Guangsuo, 2020. "Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components," Energy, Elsevier, vol. 192(C).
    4. Fan, Xiangyu & Liu, Yang & Wang, Mingdeng & Li, Chao & Zheng, Yajie & Liu, Yang & Zhong, Xiangyun & Xu, Guozhong & Zhang, Yaru & Feng, Yifei & Bai, Bin & Bai, Jinfeng, 2023. "Production of highly reactive cokes by adding alkali metals and alkaline earth metals and their effect mechanism," Energy, Elsevier, vol. 284(C).
    5. Bartocci, Pietro & Abad, Alberto & Mattisson, Tobias & Cabello, Arturo & Loscertales, Margarita de las Obras & Negredo, Teresa Mendiara & Zampilli, Mauro & Taiana, Andrea & Serra, Angela & Arauzo, Inm, 2022. "Bioenergy with Carbon Capture and Storage (BECCS) developed by coupling a Pressurised Chemical Looping combustor with a turbo expander: How to optimize plant efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    7. da Silva Filho, Valdemar Francisco & Batistella, Luciane & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Althoff, Christine Albrecht & Moreira, Regina de Fátima Peralta Muniz & José,, 2019. "Evaluation of gaseous emissions from thermal conversion of a mixture of solid municipal waste and wood chips in a pilot-scale heat generator," Renewable Energy, Elsevier, vol. 141(C), pages 402-410.
    8. Burak Atakan, 2019. "Compression–Expansion Processes for Chemical Energy Storage: Thermodynamic Optimization for Methane, Ethane and Hydrogen," Energies, MDPI, vol. 12(17), pages 1-21, August.
    9. Yin, Weijie & Wang, Shuai & Zhang, Kai & He, Yurong, 2020. "Numerical investigation of in situ gasification chemical looping combustion of biomass in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 151(C), pages 216-225.
    10. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    11. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    12. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
    13. Ma, Jing & Chen, Mengjun & Yang, Tianxue & Liu, Zhengang & Jiao, Wentao & Li, Dong & Gai, Chao, 2019. "Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust," Energy, Elsevier, vol. 173(C), pages 732-739.
    14. Kang, Jun & Zhao, Lihui & Li, Weiwei & Song, Yuncai, 2022. "Artificial neural network model of co-gasification of petroleum coke with coal or biomass in bubbling fluidized bed," Renewable Energy, Elsevier, vol. 194(C), pages 359-365.
    15. Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
    16. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    17. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    18. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    19. Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
    20. Imai, Akihisa & Hardi, Flabianus & Lundqvist, Petter & Furusjö, Erik & Kirtania, Kawnish & Karagöz, Selhan & Tekin, Kubilay & Yoshikawa, Kunio, 2018. "Alkali-catalyzed hydrothermal treatment of sawdust for production of a potential feedstock for catalytic gasification," Applied Energy, Elsevier, vol. 231(C), pages 594-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.