IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i1d10.1007_s10668-022-02811-8.html
   My bibliography  Save this article

Historical trend and drivers of China’s CO2 emissions from 2000 to 2020

Author

Listed:
  • Chong Wei

    (Shanghai Advanced Research Institute, Chinese Academy of Sciences)

Abstract

China is the largest CO2 emitter in the world and announced that carbon peak and neutral targets will be achieved before 2030 and 2060, respectively. A retrospective analysis of past CO2 emissions and their drivers is important for the actions of peaking CO2 emissions before 2030 in China. CO2 emissions from energy use (coal, oil, and natural gas) and cement production from 2000 to 2020 were calculated first, and their drivers were decomposed into economic and population growth, energy intensity, and emission coefficient by logarithmic mean Divisa index (LMDI) analysis in this study. China’s CO2 emissions increased nearly threefold from 3385 in 2000 to 10,788 million tonnes (Mt) in 2020, with a decline from 2013 to 2016. Coal was the major emission sector contributing more than 70% in most years, while natural gas emissions increased nearly 13 times from 53 to 723 Mt in the two decades, although its contribution only accounted for 6.7% in 2020. Economic growth was the major positive driver, while energy intensity reduction was the major negative driver of the emission increments by year and by the Five Year Plan (FYP). Emission coefficient reduction gradually became important due to its negative effect, especially in the 13th FYP, which offset ~ 30% of the emissions induced by economic growth. The projections of CO2 emissions in 2025, 2030, and 2035 could be 11,596 ± 582, 11,774 ± 621, and 11,401 ± 672 Mt, respectively, suggesting that China’s carbon emissions could peak around 2030 with an increment of ~ 1000 Mt on the 2020 levels. Under the sustainable growth of the economy and population, it is possible to reduce the carbon peak value or achieve peak time earlier through the additional reduction of energy intensity and emission coefficient by technological progress and energy alternatives such as non-fossil fuels. Graphical Abstract

Suggested Citation

  • Chong Wei, 2024. "Historical trend and drivers of China’s CO2 emissions from 2000 to 2020," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 2225-2244, January.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:1:d:10.1007_s10668-022-02811-8
    DOI: 10.1007/s10668-022-02811-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02811-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02811-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin Zhu & Lichun He & Peipei Shang & Yingchun Zhang & Xiaojun Ma, 2018. "Influencing Factors and Scenario Forecasts of Carbon Emissions of the Chinese Power Industry: Based on a Generalized Divisia Index Model and Monte Carlo Simulation," Energies, MDPI, vol. 11(9), pages 1-26, September.
    2. Yu, Shiwei & Zheng, Shuhong & Li, Xia & Li, Longxi, 2018. "China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring," Energy Economics, Elsevier, vol. 73(C), pages 91-107.
    3. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    4. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    5. Yang, Zhenbing & Fan, Meiting & Shao, Shuai & Yang, Lili, 2017. "Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis," Energy Economics, Elsevier, vol. 68(C), pages 271-282.
    6. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    7. Lei Tian & Zhe Ding & Yongxuan Wang & Haiyan Duan & Shuo Wang & Jie Tang & Xian’en Wang, 2016. "Analysis of the Driving Factors and Contributions to Carbon Emissions of Energy Consumption from the Perspective of the Peak Volume and Time Based on LEAP," Sustainability, MDPI, vol. 8(6), pages 1-17, May.
    8. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    9. Chen, Han & Chen, Wenying, 2019. "Potential impact of shifting coal to gas and electricity for building sectors in 28 major northern cities of China," Applied Energy, Elsevier, vol. 236(C), pages 1049-1061.
    10. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    11. Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
    12. Lin, Boqiang & Wu, Wei, 2021. "The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China," Energy Economics, Elsevier, vol. 94(C).
    13. Zhang, Weirong & Ren, Mengjia & Kang, Junjie & Zhou, Yiou & Yuan, Jiahai, 2022. "Estimating stranded coal assets in China's power sector," Utilities Policy, Elsevier, vol. 75(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jie & Xiong, Yiling & Tian, Xin & Liu, Shangwei & Li, Jiashuo & Tanikawa, Hiroki, 2018. "Stagnating CO2 emissions with in-depth socioeconomic transition in Beijing," Applied Energy, Elsevier, vol. 228(C), pages 1714-1725.
    2. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    3. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    4. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    5. Min Lu & Xing Wang & Yuquan Cang, 2018. "Carbon Productivity: Findings from Industry Case Studies in Beijing," Energies, MDPI, vol. 11(10), pages 1-19, October.
    6. Wang, Miao & Feng, Chao, 2021. "The consequences of industrial restructuring, regional balanced development, and market-oriented reform for China's carbon dioxide emissions: A multi-tier meta-frontier DEA-based decomposition analysi," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    7. Zhang, Kun & Xue, Mei-Mei & Feng, Kuishuang & Liang, Qiao-Mei, 2019. "The economic effects of carbon tax on China’s provinces," Journal of Policy Modeling, Elsevier, vol. 41(4), pages 784-802.
    8. Shiqing Zhang & Jianwei Wang & Wenlong Zheng, 2018. "Decomposition Analysis of Energy-Related CO 2 Emissions and Decoupling Status in China’s Logistics Industry," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
    9. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    10. Li, Yonglin & Zuo, Zhili & Cheng, Yue & Cheng, Jinhua & Xu, Deyi, 2023. "Towards a decoupling between regional economic growth and CO2 emissions in China's mining industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 80(C).
    11. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    12. Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
    13. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    14. Xiao, Hongwei & Ma, Zhongyu & Mi, Zhifu & Kelsey, John & Zheng, Jiali & Yin, Weihua & Yan, Min, 2018. "Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data," Applied Energy, Elsevier, vol. 231(C), pages 1070-1078.
    15. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    16. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "The driving forces and potential mitigation of energy-related CO2 emissions in China's metal industry," Resources Policy, Elsevier, vol. 59(C), pages 487-494.
    17. Rui Huang & Klaus Hubacek & Kuishuang Feng & Xiaojie Li & Chao Zhang, 2018. "Re-Examining Embodied SO 2 and CO 2 Emissions in China," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    18. Liu, Yajuan & Wang, Yutao & Mi, Zhifu & Ma, Zhongyu, 2018. "Carbon implications of China’s changing economic structure at the city level," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 163-171.
    19. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    20. Jinpeng Liu & Delin Wei, 2020. "Analysis and Measurement of Carbon Emission Aggregation and Spillover Effects in China: Based on a Sectoral Perspective," Sustainability, MDPI, vol. 12(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:1:d:10.1007_s10668-022-02811-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.