IDEAS home Printed from https://ideas.repec.org/a/mfj/journl/v13y2009i3-4p293-321.html
   My bibliography  Save this article

Robust Regression Estimation Methods and Intercept Bias: A Capital Asset Pricing Model Application

Author

Listed:
  • James B. McDonald

    (Brigham Young University, USA)

  • Richard A. Michelfelder

    (Rutgers University, USA)

  • Panayiotis Theodossiou

    (Cyprus University of Technology, Cyprus)

Abstract

Robust estimation techniques based on symmetric probability distributions are often substituted for OLS to obtain efficient regression parameters with thick-tail distributed data. The empirical, simulation and theoretical results in this paper show that with skewed distributed data, symmetric robust estimation techniques produce biased regression intercepts. This paper evaluates robust methods in estimating the capital asset pricing model and shows skewed stock returns data used with symmetric robust estimation techniques produce biased alphas. The results support the recommendation that robust estimation using the skewed generalized T family of distributions may be used to obtain more efficient and unbiased estimates with skewness.

Suggested Citation

  • James B. McDonald & Richard A. Michelfelder & Panayiotis Theodossiou, 2009. "Robust Regression Estimation Methods and Intercept Bias: A Capital Asset Pricing Model Application," Multinational Finance Journal, Multinational Finance Journal, vol. 13(3-4), pages 293-321, September.
  • Handle: RePEc:mfj:journl:v:13:y:2009:i:3-4:p:293-321
    as

    Download full text from publisher

    File URL: http://www.mfsociety.org/modules/modDashboard/uploadFiles/journals/MJ~777~p16uelq1mr19251cptdtu1nab1lsr4.pdf
    Download Restriction: no

    File URL: http://www.mfsociety.org/modules/modDashboard/uploadFiles/journals/googleScholar/798.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    3. Butler, Richard J, 1990. "Robust and Partially Adaptive Estimation of Regression Models," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 321-327, May.
    4. Robert Bartels & Denzil G. Fiebig, 1990. "Integrating Direct Metering and Conditional Demand Analysis for Estimating End-Use Loads," The Energy Journal, , vol. 11(4), pages 79-98, October.
    5. Francis, Jack Clark, 1975. "Skewness and Investors' Decisions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 10(1), pages 163-172, March.
    6. Fama, Eugene F, et al, 1969. "The Adjustment of Stock Prices to New Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 1-21, February.
    7. Chan, Louis K. C. & Lakonishok, Josef, 1992. "Robust Measurement of Beta Risk," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 27(2), pages 265-282, June.
    8. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    9. Michael Parti & Cynthia Parti, 1980. "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 309-321, Spring.
    10. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    11. Mandelbrot, Benoit B, 1972. "Correction of an Error in "The Variation of Certain Speculative Prices" (1963)," The Journal of Business, University of Chicago Press, vol. 45(4), pages 542-543, October.
    12. Hartman, Raymond S, 1983. "The Estimation of Short-run Household Electricity Demand Using Pooled Aggregate Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 127-135, April.
    13. Brian Boyer & James McDonald & Whitney Newey, 2003. "A Comparison of Partially Adaptive and Reweighted Least Squares Estimation," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 115-134.
    14. D. A. Hsu, 1979. "Long‐Tailed Distributions for Position Errors in Navigation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 62-72, March.
    15. McDonald, James B., 1989. "Partially adaptive estimation of ARMA time series models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 217-230.
    16. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    17. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    18. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard A. Michelfelder, 2015. "Electric utility regulation and investment in green energy resources," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 5(1-2), pages 48-64, April.
    2. Theodossiou, Alexandra K. & Theodossiou, Panayiotis, 2014. "Stock return outliers and beta estimation: The case of U.S. pharmaceutical companies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 153-171.
    3. Joe Hirschberg & Jenny Lye, 2021. "Estimating risk premiums for regulated firms when accounting for reference-day variation and high-order moments of return volatility," Environment Systems and Decisions, Springer, vol. 41(3), pages 455-467, September.
    4. Stephen Matteo Miller, 2012. "Booms and Busts as Exchange Options," Multinational Finance Journal, Multinational Finance Journal, vol. 16(3-4), pages 189-223, September.
    5. Andreou, Panayiotis C. & Louca, Christodoulos & Panayides, Photis M., 2014. "Corporate governance, financial management decisions and firm performance: Evidence from the maritime industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 59-78.
    6. Sikora, Grzegorz & Michalak, Anna & Bielak, Łukasz & Miśta, Paweł & Wyłomańska, Agnieszka, 2019. "Stochastic modeling of currency exchange rates with novel validation techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1202-1215.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Mcdonald & Richard Michelfelder & Panayiotis Theodossiou, 2010. "Robust estimation with flexible parametric distributions: estimation of utility stock betas," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 375-387.
    2. Stefan Mittnik & Marc Paolella & Svetlozar Rachev, 1998. "Unconditional and Conditional Distributional Models for the Nikkei Index," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 5(2), pages 99-128, May.
    3. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    4. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    5. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    6. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
    7. Ibrahim Ergen, 2015. "Two-step methods in VaR prediction and the importance of fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1013-1030, June.
    8. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    9. James B. McDonald & Hieu Nguyen, 2012. "Heteroskedasticity and Distributional Assumptions in the Censored Regression Model," BYU Macroeconomics and Computational Laboratory Working Paper Series 2012-09, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    10. Richard Harris & C. Coskun Kucukozmen, 2001. "The empirical distribution of stock returns: evidence from an emerging European market," Applied Economics Letters, Taylor & Francis Journals, vol. 8(6), pages 367-371.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    12. Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
    13. Chan, Felix, 2009. "Modelling time-varying higher moments with maximum entropy density," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2767-2778.
    14. Sylvia J. Soltyk & Felix Chan, 2023. "Modeling time‐varying higher‐order conditional moments: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 33-57, February.
    15. Allen, Linda & Bali, Turan G., 2007. "Cyclicality in catastrophic and operational risk measurements," Journal of Banking & Finance, Elsevier, vol. 31(4), pages 1191-1235, April.
    16. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
    17. Stavros Degiannakis & Evdokia Xekalaki, 2005. "Predictability and model selection in the context of ARCH models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(1), pages 55-82, January.
    18. Toshiaki Watana, 2000. "Excess kurtosis of conditional distribution for daily stock returns: the case of Japan," Applied Economics Letters, Taylor & Francis Journals, vol. 7(6), pages 353-355.
    19. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Aloui, Riadh & Ben Aïssa, Mohamed Safouane & Nguyen, Duc Khuong, 2013. "Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 719-738.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mfj:journl:v:13:y:2009:i:3-4:p:293-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theodossiou Panayiotis (email available below). General contact details of provider: https://edirc.repec.org/data/mfsssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.