IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/1733.html
   My bibliography  Save this article

Információ és tudás. A big data egyes hatásai a közgazdaságtanra
[Information and knowledge: some effects of big data on economics]

Author

Listed:
  • Vincze, János

Abstract

Az informatikai forradalom és az ezzel összefüggő big data-jelenség a tudományokat és a tudományos kutatást is megváltoztatja. Ez az írás néhány olyan tényezőre mutat rá, amelyek a közgazdaságtant érintik. A dezaggregáltabb és strukturálatlan adatok intenzív használatától összességében az várható, hogy az empirikus közgazdaságtan módszertana megváltozik, ami hatással lesz az elmélet és az empíria kapcsolatára is. Journal of Economic Literature (JEL) kód: A12, B41, C01.

Suggested Citation

  • Vincze, János, 2017. "Információ és tudás. A big data egyes hatásai a közgazdaságtanra [Information and knowledge: some effects of big data on economics]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1148-1159.
  • Handle: RePEc:ksa:szemle:1733
    DOI: 10.18414/KSZ.2017.11.1148
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=1733
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.

    File URL: https://libkey.io/10.18414/KSZ.2017.11.1148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liran Einav & Jonathan Levin, 2014. "The Data Revolution and Economic Analysis," Innovation Policy and the Economy, University of Chicago Press, vol. 14(1), pages 1-24.
    2. Dupasquier, Chantal & Guay, Alain & St-Amant, Pierre, 1999. "A Survey of Alternative Methodologies for Estimating Potential Output and the Output Gap," Journal of Macroeconomics, Elsevier, vol. 21(3), pages 577-595, July.
    3. Durlauf, Steven N & Johnson, Paul A, 1995. "Multiple Regimes and Cross-Country Growth Behaviour," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 365-384, Oct.-Dec..
    4. Christophe Deissenberg & Sander van Der Hoog & Herbert Dawid, 2008. "EURACE: A Massively Parallel Agent-Based Model of the European Economy," Working Papers halshs-00339756, HAL.
    5. Zsolt Darvas & Gábor Vadas, 2003. "Univariate Potential Output Estimations for Hungary," MNB Working Papers 2003/8, Magyar Nemzeti Bank (Central Bank of Hungary).
    6. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    7. Griliches, Zvi, 1986. "Economic data issues," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 3, chapter 25, pages 1465-1514, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    2. Max Nathan & Anna Rosso, 2017. "Innovative events," Development Working Papers 429, Centro Studi Luca d'Agliano, University of Milano, revised 08 Apr 2019.
    3. Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
    4. Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021. "Filtering the intensity of public concern from social media count data with jumps," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
    5. Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
    6. Jian Gao & Tao Zhou, 2017. "Quantifying China's Regional Economic Complexity," Papers 1703.01292, arXiv.org, revised Nov 2017.
    7. Serena Ng, 2017. "Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data," NBER Working Papers 23673, National Bureau of Economic Research, Inc.
    8. Whitaker, Stephan D., 2018. "Big Data versus a survey," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 285-296.
    9. Nathan, Max & Rosso, Anna, 2015. "Mapping digital businesses with big data: Some early findings from the UK," Research Policy, Elsevier, vol. 44(9), pages 1714-1733.
    10. Max Nathan & Anna Rosso, 2014. "Mapping Information Economy Businesses with Big Data: Findings for the UK," CEP Occasional Papers 44, Centre for Economic Performance, LSE.
    11. Wagner Piazza Gaglianone & João Victor Issler, 2014. "Microfounded Forecasting," Working Papers Series 372, Central Bank of Brazil, Research Department.
    12. Zhongqi Deng & Yu Zhang & Ao Yu, 2020. "The New Economy in China: An Intercity Comparison," SAGE Open, , vol. 10(4), pages 21582440209, December.
    13. Eakin, Hallie & Appendini, Kirsten & Sweeney, Stuart & Perales, Hugo, 2015. "Correlates of Maize Land and Livelihood Change Among Maize Farming Households in Mexico," World Development, Elsevier, vol. 70(C), pages 78-91.
    14. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.
    15. Katsuyuki Tanaka & Takuji Kinkyo & Shigeyuki Hamori, 2018. "Financial Hazard Map: Financial Vulnerability Predicted by a Random Forests Classification Model," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    16. Haskamp, Ulrich, 2017. "Improving the forecasts of European regional banks' profitability with machine learning algorithms," Ruhr Economic Papers 705, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Lane, Julia I. & Owen-Smith, Jason & Rosen, Rebecca F. & Weinberg, Bruce A., 2015. "New linked data on research investments: Scientific workforce, productivity, and public value," Research Policy, Elsevier, vol. 44(9), pages 1659-1671.
    18. Vincze, János & Takács, Olga, 2018. "Bérelőrejelzések - prediktorok és tanulságok [Wage forecasts predictors and lessons]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 592-618.
    19. Fali Huang, 2006. "What Matter for Child Development?," Working Papers 24-2006, Singapore Management University, School of Economics.
    20. Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019. "The Impact of Big Data on Firm Performance: An Empirical Investigation," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.

    More about this item

    JEL classification:

    • A12 - General Economics and Teaching - - General Economics - - - Relation of Economics to Other Disciplines
    • B41 - Schools of Economic Thought and Methodology - - Economic Methodology - - - Economic Methodology
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:1733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.