IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Can scale and coefficient heterogeneity be separated in random coefficients models?

  • Stephane Hess

    ()

  • John Rose

    ()

There is growing interest in the notion that a significant component of the heterogeneity retrieved in random coefficients models may actually relate to variations in absolute sensitivities, a phenomenon referred to as scale heterogeneity. As a result, a number of authors have tried to explicitly model such scale heterogeneity, which is shared across coefficients, and separate it from heterogeneity in individual coefficients. This direction of work has in part motivated the development of specialised modelling tools such as the G-MNL model. While not disagreeing with the notion that scale heterogeneity across respondents exists, this paper argues that attempts in the literature to disentangle scale heterogeneity from heterogeneity in individual coefficients in discrete choice models are misguided. In particular, we show how the various model specifications can in fact simply be seen as different parameterisations, and that any gains in fit obtained in random scale models are the result of using more flexible distributions, rather than an ability to capture scale heterogeneity. We illustrate our arguments through an empirical example and show how the conclusions from past work are based on misinterpretations of model results. Copyright Springer Science+Business Media, LLC. 2012

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s11116-012-9394-9
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Transportation.

Volume (Year): 39 (2012)
Issue (Month): 6 (November)
Pages: 1225-1239

as
in new window

Handle: RePEc:kap:transp:v:39:y:2012:i:6:p:1225-1239
Contact details of provider: Web page: http://www.springerlink.com/link.asp?id=103007

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hess, Stephane & Stathopoulos, Amanda, 2013. "Linking response quality to survey engagement: A combined random scale and latent variable approach," Journal of choice modelling, Elsevier, vol. 7(C), pages 1-12.
  2. Swait, Joffre & Adamowicz, Wiktor, 2001. "Choice Environment, Market Complexity, and Consumer Behavior: A Theoretical and Empirical Approach for Incorporating Decision Complexity into Models of Consumer Choice," Organizational Behavior and Human Decision Processes, Elsevier, vol. 86(2), pages 141-167, November.
  3. Hensher, David & Louviere, Jordan & Swait, Joffre, 1998. "Combining sources of preference data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 197-221, November.
  4. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
  5. Fosgerau, M. & Bierlaire, M., 2009. "Discrete choice models with multiplicative error terms," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 494-505, June.
  6. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
  7. Caussade, Sebastián & Ortúzar, Juan de Dios & Rizzi, Luis I. & Hensher, David A., 2005. "Assessing the influence of design dimensions on stated choice experiment estimates," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 621-640, August.
  8. Minxian Yang, 2004. "Normal Log-normal Mixture: Leptokurtosis, Skewness and Applications," Econometric Society 2004 Australasian Meetings 186, Econometric Society.
  9. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
  10. William Greene & David Hensher, 2010. "Does scale heterogeneity across individuals matter? An empirical assessment of alternative logit models," Transportation, Springer, vol. 37(3), pages 413-428, May.
  11. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  12. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
  13. Jordan J. Louviere & Towhidul Islam & Nada Wasi & Deborah Street & Leonie Burgess, 2008. "Designing Discrete Choice Experiments: Do Optimal Designs Come at a Price?," Journal of Consumer Research, University of Chicago Press, vol. 35(2), pages 360-375, 03.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:39:y:2012:i:6:p:1225-1239. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.