IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v92y2022i3d10.1007_s11238-022-09873-0.html
   My bibliography  Save this article

Composition rules in original and cumulative prospect theory

Author

Listed:
  • Richard Gonzalez

    (University of Michigan)

  • George Wu

    (University of Chicago)

Abstract

Original and cumulative prospect theory differ in the composition rule used to combine the probability weighting function and the value function. We test the predictive power of these composition rules by performing a novel out-of-sample prediction test. We apply estimates of prospect theory’s weighting and value function obtained from two-outcome cash equivalents, a domain where original and cumulative prospect theory coincide, to three-outcome cash equivalents, a domain where the composition rules of the two theories differ. Although both forms of prospect theory predict three-outcome cash equivalents very well, at the aggregate level, we find small but systematic under-prediction of cash equivalents for cumulative prospect theory and small but systematic over-prediction of cash equivalents for original prospect theory. We also observe substantial heterogeneity across subjects and types of gambles, some of which is accounted for by differences in the curvature and elevation of the weighting function across individuals. We also find differences in prediction related to whether the worst outcome is zero or non-zero.

Suggested Citation

  • Richard Gonzalez & George Wu, 2022. "Composition rules in original and cumulative prospect theory," Theory and Decision, Springer, vol. 92(3), pages 647-675, April.
  • Handle: RePEc:kap:theord:v:92:y:2022:i:3:d:10.1007_s11238-022-09873-0
    DOI: 10.1007/s11238-022-09873-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11238-022-09873-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11238-022-09873-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diecidue, Enrico & Wakker, Peter P, 2001. "On the Intuition of Rank-Dependent Utility," Journal of Risk and Uncertainty, Springer, vol. 23(3), pages 281-298, November.
    2. B. Douglas Bernheim & Charles Sprenger, 2020. "On the Empirical Validity of Cumulative Prospect Theory: Experimental Evidence of Rank‐Independent Probability Weighting," Econometrica, Econometric Society, vol. 88(4), pages 1363-1409, July.
    3. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    4. Mohammed Abdellaoui, 2002. "A Genuine Rank-Dependent Generalization of the Von Neumann-Morgenstern Expected Utility Theorem," Econometrica, Econometric Society, vol. 70(2), pages 717-736, March.
    5. Bruno Jullien & Bernard Salanie, 2000. "Estimating Preferences under Risk: The Case of Racetrack Bettors," Journal of Political Economy, University of Chicago Press, vol. 108(3), pages 503-530, June.
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. Wu, George, 1994. "An Empirical Test of Ordinal Independence," Journal of Risk and Uncertainty, Springer, vol. 9(1), pages 39-60, July.
    8. Han Bleichrodt & Jose Luis Pinto, 2000. "A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis," Management Science, INFORMS, vol. 46(11), pages 1485-1496, November.
    9. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    10. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    11. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    12. Dhami, Sanjit, 2016. "The Foundations of Behavioral Economic Analysis," OUP Catalogue, Oxford University Press, number 9780198715535, Decembrie.
    13. Wakker, Peter, 1990. "Characterizing optimism and pessimism directly through comonotonicity," Journal of Economic Theory, Elsevier, vol. 52(2), pages 453-463, December.
    14. Camerer, Colin F & Ho, Teck-Hua, 1994. "Violations of the Betweenness Axiom and Nonlinearity in Probability," Journal of Risk and Uncertainty, Springer, vol. 8(2), pages 167-196, March.
    15. Levon Barseghyan & Francesca Molinari & Ted O'Donoghue & Joshua C. Teitelbaum, 2013. "The Nature of Risk Preferences: Evidence from Insurance Choices," American Economic Review, American Economic Association, vol. 103(6), pages 2499-2529, October.
    16. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    17. Enrico Diecidue & Peter Wakker & Marcel Zeelenberg, 2007. "Eliciting decision weights by adapting de Finetti’s betting-odds method to prospect theory," Journal of Risk and Uncertainty, Springer, vol. 34(3), pages 179-199, June.
    18. Pierre‐André Chiappori & Bernard Salanié & François Salanié & Amit Gandhi, 2019. "From Aggregate Betting Data to Individual Risk Preferences," Econometrica, Econometric Society, vol. 87(1), pages 1-36, January.
    19. Costa-Gomes, Miguel & Crawford, Vincent P & Broseta, Bruno, 2001. "Cognition and Behavior in Normal-Form Games: An Experimental Study," Econometrica, Econometric Society, vol. 69(5), pages 1193-1235, September.
    20. Helga Fehr-Duda & Manuele Gennaro & Renate Schubert, 2006. "Gender, Financial Risk, and Probability Weights," Theory and Decision, Springer, vol. 60(2), pages 283-313, May.
    21. Wakker, Peter & Tversky, Amos, 1993. "An Axiomatization of Cumulative Prospect Theory," Journal of Risk and Uncertainty, Springer, vol. 7(2), pages 147-175, October.
    22. Amit Kothiyal & Vitalie Spinu & Peter Wakker, 2014. "An experimental test of prospect theory for predicting choice under ambiguity," Journal of Risk and Uncertainty, Springer, vol. 48(1), pages 1-17, February.
    23. Starmer, Chris & Sugden, Robert, 1993. "Testing for Juxtaposition and Event-Splitting Effects," Journal of Risk and Uncertainty, Springer, vol. 6(3), pages 235-254, June.
    24. Stephen G Dimmock & Roy Kouwenberg & Olivia S Mitchell & Kim Peijnenburg, 2021. "Household Portfolio Underdiversification and Probability Weighting: Evidence from the Field," The Review of Financial Studies, Society for Financial Studies, vol. 34(9), pages 4524-4563.
    25. Henry Stott, 2006. "Cumulative prospect theory's functional menagerie," Journal of Risk and Uncertainty, Springer, vol. 32(2), pages 101-130, March.
    26. Chris Starmer, 2000. "Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk," Journal of Economic Literature, American Economic Association, vol. 38(2), pages 332-382, June.
    27. Ryan O. Murphy & Robert H. W. ten Brincke, 2018. "Hierarchical Maximum Likelihood Parameter Estimation for Cumulative Prospect Theory: Improving the Reliability of Individual Risk Parameter Estimates," Management Science, INFORMS, vol. 64(1), pages 308-328, January.
    28. George Wu & Jiao Zhang & Mohammed Abdellaoui, 2005. "Testing Prospect Theories Using Probability Tradeoff Consistency," Journal of Risk and Uncertainty, Springer, vol. 30(2), pages 107-131, January.
    29. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    30. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    31. Gurevich, Gregory & Kliger, Doron & Levy, Ori, 2009. "Decision-making under uncertainty - A field study of cumulative prospect theory," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1221-1229, July.
    32. Tversky, Amos & Wakker, Peter, 1995. "Risk Attitudes and Decision Weights," Econometrica, Econometric Society, vol. 63(6), pages 1255-1280, November.
    33. Craig R. Fox & Amos Tversky, 1998. "A Belief-Based Account of Decision Under Uncertainty," Management Science, INFORMS, vol. 44(7), pages 879-895, July.
    34. Johnson, Eric J. & Camerer, Colin & Sen, Sankar & Rymon, Talia, 2002. "Detecting Failures of Backward Induction: Monitoring Information Search in Sequential Bargaining," Journal of Economic Theory, Elsevier, vol. 104(1), pages 16-47, May.
    35. Birnbaum, Michael H., 2006. "Evidence against prospect theories in gambles with positive, negative, and mixed consequences," Journal of Economic Psychology, Elsevier, vol. 27(6), pages 737-761, December.
    36. Tversky, Amos & Kahneman, Daniel, 1986. "Rational Choice and the Framing of Decisions," The Journal of Business, University of Chicago Press, vol. 59(4), pages 251-278, October.
    37. Luce, R Duncan & Fishburn, Peter C, 1991. "Rank- and Sign-Dependent Linear Utility Models for Finite First-Order Gambles," Journal of Risk and Uncertainty, Springer, vol. 4(1), pages 29-59, January.
    38. Nicholas C. Barberis, 2013. "Thirty Years of Prospect Theory in Economics: A Review and Assessment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 173-196, Winter.
    39. Costa-Gomes, Miguel & Crawford, Vincent P. & Broseta, Bruno, 1998. "Cognition and Behavior in Normal-Form Games: An Experimental Study," University of California at San Diego, Economics Working Paper Series qt1vn4h7x5, Department of Economics, UC San Diego.
    40. Mohammed Abdellaoui, 2000. "Parameter-Free Elicitation of Utility and Probability Weighting Functions," Management Science, INFORMS, vol. 46(11), pages 1497-1512, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    2. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    3. George Wu & Alex B. Markle, 2008. "An Empirical Test of Gain-Loss Separability in Prospect Theory," Management Science, INFORMS, vol. 54(7), pages 1322-1335, July.
    4. George Wu & Jiao Zhang & Mohammed Abdellaoui, 2005. "Testing Prospect Theories Using Probability Tradeoff Consistency," Journal of Risk and Uncertainty, Springer, vol. 30(2), pages 107-131, January.
    5. Diecidue, Enrico & Schmidt, Ulrich & Zank, Horst, 2009. "Parametric weighting functions," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1102-1118, May.
    6. Francesco Cesarone & Massimiliano Corradini & Lorenzo Lampariello & Jessica Riccioni, 2023. "A new behavioral model for portfolio selection using the Half-Full/Half-Empty approach," Papers 2312.10749, arXiv.org.
    7. Kpegli, Yao Thibaut & Corgnet, Brice & Zylbersztejn, Adam, 2023. "All at once! A comprehensive and tractable semi-parametric method to elicit prospect theory components," Journal of Mathematical Economics, Elsevier, vol. 104(C).
    8. Birnbaum, Michael H., 2004. "Tests of rank-dependent utility and cumulative prospect theory in gambles represented by natural frequencies: Effects of format, event framing, and branch splitting," Organizational Behavior and Human Decision Processes, Elsevier, vol. 95(1), pages 40-65, September.
    9. Michael H. Birnbaum & Ulrich Schmidt & Miriam D. Schneider, 2017. "Testing independence conditions in the presence of errors and splitting effects," Journal of Risk and Uncertainty, Springer, vol. 54(1), pages 61-85, February.
    10. Michael Birnbaum, 2005. "A Comparison of Five Models that Predict Violations of First-Order Stochastic Dominance in Risky Decision Making," Journal of Risk and Uncertainty, Springer, vol. 31(3), pages 263-287, December.
    11. Michael Kilka & Martin Weber, 2001. "What Determines the Shape of the Probability Weighting Function Under Uncertainty?," Management Science, INFORMS, vol. 47(12), pages 1712-1726, December.
    12. Wakker, Peter P., 2023. "A criticism of Bernheim & Sprenger's (2020) tests of rank dependence," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 107(C).
    13. Thomas Epper & Helga Fehr-Duda, 2012. "The missing link: unifying risk taking and time discounting," ECON - Working Papers 096, Department of Economics - University of Zurich, revised Oct 2018.
    14. Horst Zank, 2010. "On probabilities and loss aversion," Theory and Decision, Springer, vol. 68(3), pages 243-261, March.
    15. Filiz-Ozbay, Emel & Guryan, Jonathan & Hyndman, Kyle & Kearney, Melissa & Ozbay, Erkut Y., 2015. "Do lottery payments induce savings behavior? Evidence from the lab," Journal of Public Economics, Elsevier, vol. 126(C), pages 1-24.
    16. Aurélien Baillon & Han Bleichrodt & Vitalie Spinu, 2020. "Searching for the Reference Point," Management Science, INFORMS, vol. 66(1), pages 93-112, January.
    17. Gijs van de Kuilen & Peter P. Wakker, 2011. "The Midweight Method to Measure Attitudes Toward Risk and Ambiguity," Management Science, INFORMS, vol. 57(3), pages 582-598, March.
    18. Andreas Glöckner & Baiba Renerte & Ulrich Schmidt, 2020. "Violations of coalescing in parametric utility measurement," Theory and Decision, Springer, vol. 89(4), pages 471-501, November.
    19. Martín Egozcue & Luis Fuentes García & Ričardas Zitikis, 2023. "The Slicing Method: Determining Insensitivity Regions of Probability Weighting Functions," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1369-1402, April.
    20. Adam Booij & Bernard Praag & Gijs Kuilen, 2010. "A parametric analysis of prospect theory’s functionals for the general population," Theory and Decision, Springer, vol. 68(1), pages 115-148, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:92:y:2022:i:3:d:10.1007_s11238-022-09873-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.