IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v20y2020i2d10.1007_s11067-019-09487-0.html
   My bibliography  Save this article

Synchronizing Last Trains of Urban Rail Transit System to Better Serve Passengers from Late Night Trains of High-Speed Railway Lines

Author

Listed:
  • Sihui Long

    (Beijing Jiaotong University)

  • Lingyun Meng

    (Beijing Jiaotong University)

  • Jianrui Miao

    (Beijing Jiaotong University)

  • Xin Hong

    (Beijing Jiaotong University)

  • Francesco Corman

    (Institute for Transport Planning and Systems (IVT), ETH Zurich)

Abstract

Synchronizing last trains of Urban Rail Transit (URT) system is important for passenger transportation, especially for travelers from other modes, such as high-speed railway (HSR) trains in late night, to reach their destinations. This paper develops a bi-objective mixed-integer linear programming model for the problem of Last-Train Timetable Synchronization (LTTS) of URT system in late night hours. The bi-objective optimization model maximizes the number of passengers who can arrive at their destinations successfully, and minimizes the total operation ending time for last trains of URT system. This model can deliver both a last-train transfer scheme solution (i.e. which transfer connections to keep at which stations) and a last-train timetable of URT system (i.e. arrival and departure times for last trains at stations) at the same time. Transfer walking time is considered different for passengers, and suggestions for passengers to adopt certain transfer connections are dynamically dependent on the last-train timetable and passenger assignment. The Epsilon-constraint method is used to find the Pareto optimal solutions for the proposed bi-objective model. Numerical tests based on a sample network demonstrate the validity of the model on solving the LTTS problem. To evaluate the effectiveness and efficiency of the bi-objective model in practice, real-world experiments are conducted based on Beijing-Shanghai high-speed railway (HSR-BS) line, Beijing-Tianjin inter-city high-speed railway (HSR-BT) line and Beijing urban rail transit (URT) system. We also present a set of experiments to evaluate the benefits of considering different Transfer Walking Time (TWT) of passengers in the model, compared to models with constant and identical TWT for all passengers.

Suggested Citation

  • Sihui Long & Lingyun Meng & Jianrui Miao & Xin Hong & Francesco Corman, 2020. "Synchronizing Last Trains of Urban Rail Transit System to Better Serve Passengers from Late Night Trains of High-Speed Railway Lines," Networks and Spatial Economics, Springer, vol. 20(2), pages 599-633, June.
  • Handle: RePEc:kap:netspa:v:20:y:2020:i:2:d:10.1007_s11067-019-09487-0
    DOI: 10.1007/s11067-019-09487-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-019-09487-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-019-09487-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabrio Caimi & Dan Burkolter & Thomas Herrmann & Fabian Chudak & Marco Laumanns, 2009. "Design of a Railway Scheduling Model for Dense Services," Networks and Spatial Economics, Springer, vol. 9(1), pages 25-46, March.
    2. Domschke, Wolfgang, 1989. "Schedule synchronization for public transit networks," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 39291, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Christian Liebchen, 2008. "The First Optimized Railway Timetable in Practice," Transportation Science, INFORMS, vol. 42(4), pages 420-435, November.
    4. Ibarra-Rojas, Omar J. & Rios-Solis, Yasmin A., 2012. "Synchronization of bus timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 599-614.
    5. Ghoseiri, Keivan & Szidarovszky, Ferenc & Asgharpour, Mohammad Jawad, 2004. "A multi-objective train scheduling model and solution," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 927-952, December.
    6. Rachel C. W. Wong & Tony W. Y. Yuen & Kwok Wah Fung & Janny M. Y. Leung, 2008. "Optimizing Timetable Synchronization for Rail Mass Transit," Transportation Science, INFORMS, vol. 42(1), pages 57-69, February.
    7. Bosina, Ernst & Weidmann, Ulrich, 2017. "Estimating pedestrian speed using aggregated literature data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 1-29.
    8. Yongqiu Zhu & Rob M. P. Goverde, 2019. "Dynamic Passenger Assignment for Major Railway Disruptions Considering Information Interventions," Networks and Spatial Economics, Springer, vol. 19(4), pages 1249-1279, December.
    9. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Wang, Bo, 2015. "A practical model for last train rescheduling with train delay in urban railway transit networks," Omega, Elsevier, vol. 50(C), pages 29-42.
    10. Shafahi, Yousef & Khani, Alireza, 2010. "A practical model for transfer optimization in a transit network: Model formulations and solutions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 377-389, July.
    11. Burdett, Robert L., 2015. "Multi-objective models and techniques for analysing the absolute capacity of railway networks," European Journal of Operational Research, Elsevier, vol. 245(2), pages 489-505.
    12. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning, Jia & Xing, Xinjie & Wang, Yadong & Yao, Yu & Kang, Liujiang & Peng, Qiyuan, 2024. "Coordinating last-train timetabling with app-based ride-hailing service under uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    2. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    3. Xie, Jiemin & Zhan, Shuguang & Wong, S.C. & Wen, Keyu & Qiang, Lixia & Lo, S.M., 2022. "High-speed rail services for elderly passengers: Ticket-booking patterns and policy implications," Transport Policy, Elsevier, vol. 125(C), pages 96-106.
    4. Wanqi Wang & Yun Bao & Sihui Long, 2022. "Rescheduling Urban Rail Transit Trains to Serve Passengers from Uncertain Delayed High-Speed Railway Trains," Sustainability, MDPI, vol. 14(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.
    2. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    3. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    4. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Puchinger, Jakob & Ruthmair, Mario & Hu, Bin, 2016. "Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 17-36.
    5. Wanqi Wang & Yun Bao & Sihui Long, 2022. "Rescheduling Urban Rail Transit Trains to Serve Passengers from Uncertain Delayed High-Speed Railway Trains," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    6. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
    7. Guo, Xin & Wu, Jianjun & Sun, Huijun & Yang, Xin & Jin, Jian Gang & Wang, David Z.W., 2020. "Scheduling synchronization in urban rail transit networks: Trade-offs between transfer passenger and last train operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 463-490.
    8. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    9. Kang, Liujiang & Li, Hao & Sun, Huijun & Wu, Jianjun & Cao, Zhiguang & Buhigiro, Nsabimana, 2021. "First train timetabling and bus service bridging in intermodal bus-and-train transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 443-462.
    10. Li, Shukai & Zhou, Xuesong & Yang, Lixing & Gao, Ziyou, 2018. "Automatic train regulation of complex metro networks with transfer coordination constraints: A distributed optimal control framework," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 228-253.
    11. Fonseca, João Paiva & van der Hurk, Evelien & Roberti, Roberto & Larsen, Allan, 2018. "A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 128-149.
    12. Liu, Tao & Ceder, Avishai (Avi), 2018. "Integrated public transport timetable synchronization and vehicle scheduling with demand assignment: A bi-objective bi-level model using deficit function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 935-955.
    13. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    14. Nie, Wei & Li, Hao & Xiao, Na & Yang, Hao & Jiang, Zhishu & Buhigiro, Nsabimana, 2021. "Modeling and solving the last-shift period train scheduling problem in subway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    15. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
    16. Jian Li & Lu Zhang & Bu Liu & Ningning Shi & Liang Li & Haodong Yin, 2023. "Travel-Energy-Based Timetable Optimization in Urban Subway Systems," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    17. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    18. Zhang, Quan & Li, Xuan & Yan, Tao & Lu, Lili & Shi, Yang, 2022. "Last train timetabling optimization for minimizing passenger transfer failures in urban rail transit networks: A time period based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    19. Hu, Yuting & Li, Shukai & Dessouky, Maged M. & Yang, Lixing & Gao, Ziyou, 2022. "Computationally efficient train timetable generation of metro networks with uncertain transfer walking time to reduce passenger waiting time: A generalized Benders decomposition-based method," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 210-231.
    20. Mitra Heidari & Seyyed-Mahdi Hosseini-Motlagh & Nariman Nikoo, 2020. "A subway planning bi-objective multi-period optimization model integrating timetabling and vehicle scheduling: a case study of Tehran," Transportation, Springer, vol. 47(1), pages 417-443, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:20:y:2020:i:2:d:10.1007_s11067-019-09487-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.