IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v80y2018icp175-191.html
   My bibliography  Save this article

Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor

Author

Listed:
  • Gao, Yuan
  • Kroon, Leo
  • Yang, Lixing
  • Gao, Ziyou

Abstract

When scheduling additional trains into a busy timetable, the arrival and departure times of existing trains may have to be adjusted. Taking a high-speed rail corridor as the research object, we formulate a bi-objective mixed integer linear programming model to generate a new timetable for both of the additional trains and the existing trains, which minimizes the total travel time of the additional trains and minimizes the adjustment on the existing trains at the same time. In order to better model the operations of trains on the high-speed rail line, the capacities of the stations and the acceleration/deceleration times are all taken into account. Furthermore, we propose a three-stage optimization method to solve the bi-objective model. Based on the real data of the Hangzhou–Ningbo–Wenzhou high-speed rail corridor in China, computational experiments are carried out to test the proposed model and optimization method.

Suggested Citation

  • Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
  • Handle: RePEc:eee:jomega:v:80:y:2018:i:c:p:175-191
    DOI: 10.1016/j.omega.2017.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316302572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2017.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    2. U. Brännlund & P. O. Lindberg & A. Nõu & J.-E. Nilsson, 1998. "Railway Timetabling Using Lagrangian Relaxation," Transportation Science, INFORMS, vol. 32(4), pages 358-369, November.
    3. Twan Dollevoet & Dennis Huisman & Leo Kroon & Marie Schmidt & Anita Schöbel, 2015. "Delay Management Including Capacities of Stations," Transportation Science, INFORMS, vol. 49(2), pages 185-203, May.
    4. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
    5. Gao, Yuan & Kroon, Leo & Schmidt, Marie & Yang, Lixing, 2016. "Rescheduling a metro line in an over-crowded situation after disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 425-449.
    6. Burdett, R.L. & Kozan, E., 2009. "Techniques for inserting additional trains into existing timetables," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 821-836, September.
    7. Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
    8. Christian Liebchen, 2008. "The First Optimized Railway Timetable in Practice," Transportation Science, INFORMS, vol. 42(4), pages 420-435, November.
    9. Yuri N. Sotskov & Omid Gholami, 2017. "Mixed graph model and algorithms for parallel-machine job-shop scheduling problems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(6), pages 1549-1564, March.
    10. Dollevoet, T.A.B. & Huisman, D. & Schöbel, A. & Schmidt, M.E., 2012. "Delay Management including Capacities of Stations," Econometric Institute Research Papers EI 2012-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Alberto Caprara & Matteo Fischetti & Paolo Toth, 2002. "Modeling and Solving the Train Timetabling Problem," Operations Research, INFORMS, vol. 50(5), pages 851-861, October.
    12. Yang, Lixing & Li, Keping & Gao, Ziyou & Li, Xiang, 2012. "Optimizing trains movement on a railway network," Omega, Elsevier, vol. 40(5), pages 619-633.
    13. Leonardo Lamorgese & Carlo Mannino, 2015. "An Exact Decomposition Approach for the Real-Time Train Dispatching Problem," Operations Research, INFORMS, vol. 63(1), pages 48-64, February.
    14. Zhou, Xuesong & Zhong, Ming, 2007. "Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 320-341, March.
    15. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    16. Cacchiani, Valentina & Caprara, Alberto & Toth, Paolo, 2010. "Scheduling extra freight trains on railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 215-231, February.
    17. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    18. Zhan, Shuguang & Kroon, Leo G. & Veelenturf, Lucas P. & Wagenaar, Joris C., 2015. "Real-time high-speed train rescheduling in case of a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 182-201.
    19. Leo G. Kroon & Leon W. P. Peeters & Joris C. Wagenaar & Rob A. Zuidwijk, 2014. "Flexible Connections in PESP Models for Cyclic Passenger Railway Timetabling," Transportation Science, INFORMS, vol. 48(1), pages 136-154, February.
    20. Valentina Cacchiani & Alberto Caprara & Matteo Fischetti, 2012. "A Lagrangian Heuristic for Robustness, with an Application to Train Timetabling," Transportation Science, INFORMS, vol. 46(1), pages 124-133, February.
    21. Steven Harrod, 2011. "Modeling Network Transition Constraints with Hypergraphs," Transportation Science, INFORMS, vol. 45(1), pages 81-97, February.
    22. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Wang, Bo, 2015. "A practical model for last train rescheduling with train delay in urban railway transit networks," Omega, Elsevier, vol. 50(C), pages 29-42.
    23. Lucas P. Veelenturf & Martin P. Kidd & Valentina Cacchiani & Leo G. Kroon & Paolo Toth, 2016. "A Railway Timetable Rescheduling Approach for Handling Large-Scale Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 841-862, August.
    24. Yang, Lixing & Qi, Jianguo & Li, Shukai & Gao, Yuan, 2016. "Collaborative optimization for train scheduling and train stop planning on high-speed railways," Omega, Elsevier, vol. 64(C), pages 57-76.
    25. F. Corman & A. D'Ariano & M. Pranzo & I.A. Hansen, 2011. "Effectiveness of dynamic reordering and rerouting of trains in a complicated and densely occupied station area," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(4), pages 341-362, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    2. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    3. Liu, Renming & Li, Shukai & Yang, Lixing, 2020. "Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy," Omega, Elsevier, vol. 90(C).
    4. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Kumar, Uday & Gao, Ziyou, 2019. "Integrated optimization of train scheduling and maintenance planning on high-speed railway corridors," Omega, Elsevier, vol. 87(C), pages 86-104.
    5. Shen, Jiayu, 2020. "An environmental supply chain network under uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    6. Rinaldi, Marco & Picarelli, Erika & D'Ariano, Andrea & Viti, Francesco, 2020. "Mixed-fleet single-terminal bus scheduling problem: Modelling, solution scheme and potential applications," Omega, Elsevier, vol. 96(C).
    7. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    2. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    3. Bettinelli, Andrea & Santini, Alberto & Vigo, Daniele, 2017. "A real-time conflict solution algorithm for the train rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 237-265.
    4. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    5. Meng, Lingyun & Zhou, Xuesong, 2014. "Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with network-based cumulative flow variables," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 208-234.
    6. Leonardo Lamorgese & Carlo Mannino & Mauro Piacentini, 2016. "Optimal Train Dispatching by Benders’-Like Reformulation," Transportation Science, INFORMS, vol. 50(3), pages 910-925, August.
    7. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    8. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    9. Robenek, Tomáš & Maknoon, Yousef & Azadeh, Shadi Sharif & Chen, Jianghang & Bierlaire, Michel, 2016. "Passenger centric train timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 107-126.
    10. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    11. Zhan, Shuguang & Wong, S.C. & Shang, Pan & Peng, Qiyuan & Xie, Jiemin & Lo, S.M., 2021. "Integrated railway timetable rescheduling and dynamic passenger routing during a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 86-123.
    12. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    13. Zhu, Yongqiu & Goverde, Rob M.P., 2019. "Railway timetable rescheduling with flexible stopping and flexible short-turning during disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 149-181.
    14. Yu-Jun Zheng, 2018. "Emergency Train Scheduling on Chinese High-Speed Railways," Transportation Science, INFORMS, vol. 52(5), pages 1077-1091, October.
    15. E. Ursavas & Stuart X. Zhu, 2018. "Integrated Passenger and Freight Train Planning on Shared-Use Corridors," Service Science, INFORMS, vol. 52(6), pages 1376-1390, December.
    16. Kang, Liujiang & Meng, Qiang, 2017. "Two-phase decomposition method for the last train departure time choice in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 568-582.
    17. Zhou, Wenliang & Teng, Hualiang, 2016. "Simultaneous passenger train routing and timetabling using an efficient train-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 409-439.
    18. Gao, Yuan & Kroon, Leo & Schmidt, Marie & Yang, Lixing, 2016. "Rescheduling a metro line in an over-crowded situation after disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 425-449.
    19. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    20. Shi, Jungang & Yang, Lixing & Yang, Jing & Gao, Ziyou, 2018. "Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 26-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:80:y:2018:i:c:p:175-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.