IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v15y2012i3p175-187.html
   My bibliography  Save this article

Geographic prioritization of distributing pandemic influenza vaccines

Author

Listed:
  • Ozgur Araz
  • Alison Galvani
  • Lauren Meyers

Abstract

Pandemic influenza is an international public health concern. In light of the persistent threat of H5N1 avian influenza and the recent pandemic of A/H1N1swine influenza outbreak, public health agencies around the globe are continuously revising their preparedness plans. The A/H1N1 pandemic of 2009 demonstrated that influenza activity and severity might vary considerably among age groups and locations, and the distribution of an effective influenza vaccine may be significantly delayed and staggered. Thus, pandemic influenza vaccine distribution policies should be tailored to the demographic and spatial structures of communities. Here, we introduce a bi-criteria decision-making framework for vaccine distribution policies that is based on a geospatial and demographically-structured model of pandemic influenza transmission within and between counties of Arizona in the Unites States. Based on data from the 2009–2010 H1N1 pandemic, the policy predicted to reduce overall attack rate most effectively is prioritizing counties expected to experience the latest epidemic waves (a policy that may be politically untenable). However, when we consider reductions in both the attack rate and the waiting period for those seeking vaccines, the widely adopted pro rata policy (distributing according to population size) is also predicted to be an effective strategy. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Ozgur Araz & Alison Galvani & Lauren Meyers, 2012. "Geographic prioritization of distributing pandemic influenza vaccines," Health Care Management Science, Springer, vol. 15(3), pages 175-187, September.
  • Handle: RePEc:kap:hcarem:v:15:y:2012:i:3:p:175-187
    DOI: 10.1007/s10729-012-9199-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-012-9199-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-012-9199-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anne M Presanis & Daniela De Angelis & The New York City Swine Flu Investigation Team 3 ¶ & Angela Hagy & Carrie Reed & Steven Riley & Ben S Cooper & Lyn Finelli & Paul Biedrzycki & Marc Lipsitch, 2009. "The Severity of Pandemic H1N1 Influenza in the United States, from April to July 2009: A Bayesian Analysis," PLOS Medicine, Public Library of Science, vol. 6(12), pages 1-12, December.
    2. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    3. Simon Cauchemez & Alain-Jacques Valleron & Pierre-Yves Boëlle & Antoine Flahault & Neil M. Ferguson, 2008. "Estimating the impact of school closure on influenza transmission from Sentinel data," Nature, Nature, vol. 452(7188), pages 750-754, April.
    4. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    5. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaofu Hong & Yingjie Li & Yeming Gong & Wanying Chen, 2024. "A data-driven spatially-specific vaccine allocation framework for COVID-19," Annals of Operations Research, Springer, vol. 339(1), pages 203-226, August.
    2. Shahparvari, Shahrooz & Hassanizadeh, Behnam & Mohammadi, Alireza & Kiani, Behzad & Lau, Kwok Hung & Chhetri, Prem & Abbasi, Babak, 2022. "A decision support system for prioritised COVID-19 two-dosage vaccination allocation and distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    3. Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
    4. Sanjay Mehrotra & Hamed Rahimian & Masoud Barah & Fengqiao Luo & Karolina Schantz, 2020. "A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID‐19," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 303-320, August.
    5. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    6. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    7. Sengul Orgut, Irem & Freeman, Nickolas & Lewis, Dwight & Parton, Jason, 2023. "Equitable and effective vaccine access considering vaccine hesitancy and capacity constraints," Omega, Elsevier, vol. 120(C).
    8. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    9. Laura Matrajt & M Elizabeth Halloran & Ira M Longini Jr, 2013. "Optimal Vaccine Allocation for the Early Mitigation of Pandemic Influenza," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-15, March.
    10. Manupati, Vijaya Kumar & Schoenherr, Tobias & Subramanian, Nachiappan & Ramkumar, M. & Soni, Bhanushree & Panigrahi, Suraj, 2021. "A multi-echelon dynamic cold chain for managing vaccine distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    2. van der Weijden, Charlie P. & Stein, Mart L. & Jacobi, André J. & Kretzschmar, Mirjam E.E. & Reintjes, Ralf & van Steenbergen, Jim E. & Timen, Aura, 2013. "Choosing pandemic parameters for pandemic preparedness planning: A comparison of pandemic scenarios prior to and following the influenza A(H1N1) 2009 pandemic," Health Policy, Elsevier, vol. 109(1), pages 52-62.
    3. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    4. Jérôme Adda, 2016. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 891-941.
    5. Eva K. Lee & Ferdinand Pietz & Bernard Benecke & Jacquelyn Mason & Greg Burel, 2013. "Advancing Public Health and Medical Preparedness with Operations Research," Interfaces, INFORMS, vol. 43(1), pages 79-98, February.
    6. Akira Watanabe & Hiroyuki Matsuda, 2023. "Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures," Health Care Management Science, Springer, vol. 26(1), pages 46-61, March.
    7. Andy Hong & Sandip Chakrabarti, 2023. "Compact living or policy inaction? Effects of urban density and lockdown on the COVID-19 outbreak in the US," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1588-1609, July.
    8. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    9. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    10. Warren Jochem & Kelly Sims & Edward Bright & Marie Urban & Amy Rose & Phillip Coleman & Budhendra Bhaduri, 2013. "Estimating traveler populations at airport and cruise terminals for population distribution and dynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1325-1342, September.
    11. Cuñat, Alejandro & Zymek, Robert, 2022. "The (structural) gravity of epidemics," European Economic Review, Elsevier, vol. 144(C).
    12. Ayaz Hyder & David L Buckeridge & Brian Leung, 2013. "Predictive Validation of an Influenza Spread Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-20, June.
    13. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    14. Elnaz Karimi & Ketra Schmitt & Ali Akgunduz, 2015. "Effect of individual protective behaviors on influenza transmission: an agent-based model," Health Care Management Science, Springer, vol. 18(3), pages 318-333, September.
    15. George J Milne & Nilimesh Halder & Joel K Kelso, 2013. "The Cost Effectiveness of Pandemic Influenza Interventions: A Pandemic Severity Based Analysis," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    16. Wei Zhong & Yushim Kim & Megan Jehn, 2013. "Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: case study of a 2009 H1N1 outbreak in Arizona," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 622-645, December.
    17. Carrasco, L R & Lee, V J & Chen, M I & Matchar, D B & Thompson, J P & Cook, A R, 2011. "Strategies for antiviral stockpiling for future influenza pandemics: a global epidemic-economic perspective," MPRA Paper 57763, University Library of Munich, Germany.
    18. Fenichel, Eli P., 2013. "Economic considerations for social distancing and behavioral based policies during an epidemic," Journal of Health Economics, Elsevier, vol. 32(2), pages 440-451.
    19. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    20. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:15:y:2012:i:3:p:175-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.