IDEAS home Printed from
   My bibliography  Save this article

Simulating disease transmission dynamics at a multi-scale level


  • Moshe B Hoshen

    () (Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK)

  • Anthony H Burton

    (Vaccines and Biologicals, World Health Organization, Geneva, Switzerland)

  • Themis J V Bowcock

    (Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK)


We present a model of the global spread of a generic human infectious disease using a Monte Carlo micro-simulation with large-scale parallel-processing. This prototype has been constructed and tested on a model of the entire population of the British Isles. Typical results are presented. A microsimulation of this order of magnitude of population simulation has not been previously attained. Further, an efficiency assessment of processor usage indicates that extension to the global scale is feasible. We conclude that the flexible approach outlined provides the framework for a virtual laboratory capable of supporting public health policy making at a variety of spatial scales.

Suggested Citation

  • Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
  • Handle: RePEc:ijm:journl:v:1:y:2007:i:1:p:26-34

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Axel Borsch-Supan & Barbara Berkel, 2003. "Pension Reform in Germany: The Impact on Retirement Decisions," NBER Working Papers 9913, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cathal O'Donoghue & Karyn Morrissey & John Lennon, 2014. "Spatial Microsimulation Modelling: a Review of Applications and Methodological Choices," International Journal of Microsimulation, International Microsimulation Association, vol. 7(1), pages 26-75.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijm:journl:v:1:y:2007:i:1:p:26-34. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jinjing Li). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.