IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i1p113-128.html
   My bibliography  Save this article

An Analytic Framework for Effective Public Health Program Design Using Correctional Facilities

Author

Listed:
  • Ozgur M. Araz

    (Supply Chain Management and Analytics, College of Business, University of Nebraska-Lincoln, Nebraska 68588)

  • Mayteé Cruz-Aponte

    (Department of Mathematics-Physics, University of Puerto Rico at Cayey, Puerto Rico 00736)

  • Fernando A. Wilson

    (Matheson Center for Health Care Studies, University of Utah, Salt Lake City, Utah 84108)

  • Brock W. Hanisch

    (College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198)

  • Ruth S. Margalit

    (Center for Global Engagement, Technion Israel Institute of Technology, Haifa 3200003, Israel)

Abstract

We present a decision analytic framework that uses a mathematical model of Chlamydia trachomatis transmission dynamics in two interacting populations using ordinary differential equations. A public health survey informs model parametrization, and analytical findings guide the computational design of the decision-making process. The potential impact of jail-based screen-treat (S-T) programs on community health outcomes is presented. Numerical experiments are conducted for a case study population to quantify the effect and evaluate the cost-effectiveness of considered interventions. Numerical experiments show the effectiveness of increased jail S-T rates on community cases when resources for a community S-T program stays constant. Although this effect decreases when higher S-T rates are in place, jail-based S-T programs are cost-effective relative to community-based programs. Summary of Contribution: Public health programs have been developed to control community-wide infectious diseases and to reduce prevalence of sexually transmitted diseases (STD). These programs can consist of screening and treatment of diseases and behavioral interventions. Public correctional facilities play an important role in operational execution of these public health programs. However, because of lack of capacity and resources, public health programs using correctional facilities are questioned by policy-makers in terms of their costs and benefits. In this article, we present an analytical framework using a computational epidemiology model for supporting public health policy making. The system represents the dynamics of Chlamydia trachomatis transmission in two interacting populations, with an ordinary differential equations-based simulation model. The theoretical epidemic control conditions are derived and numerically tested, which guide the design of simulation experiments. Then cost-effectiveness of the potential policies is analyzed. We also present an extensive sensitivity analyses on model parameters. This study contributes to the computational epidemiology literature by presenting an analytical framework to guide effective simulation experimentation for policy decision making. The presented methodology can be applied to other complex policy and public health problems.

Suggested Citation

  • Ozgur M. Araz & Mayteé Cruz-Aponte & Fernando A. Wilson & Brock W. Hanisch & Ruth S. Margalit, 2022. "An Analytic Framework for Effective Public Health Program Design Using Correctional Facilities," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 113-128, January.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:113-128
    DOI: 10.1287/ijoc.2020.1056
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.1056
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.1056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nigmatulina, Karima R. & Larson, Richard C., 2009. "Living with influenza: Impacts of government imposed and voluntarily selected interventions," European Journal of Operational Research, Elsevier, vol. 195(2), pages 613-627, June.
    2. Griffiths, Jeff & Lowrie, Dawn & Williams, Janet, 2000. "An age-structured model for the AIDS epidemic," European Journal of Operational Research, Elsevier, vol. 124(1), pages 1-14, July.
    3. Oluwaseun Sharomi & Tufail Malik, 2017. "Optimal control in epidemiology," Annals of Operations Research, Springer, vol. 251(1), pages 55-71, April.
    4. Yarmand, Hamed & Ivy, Julie S. & Denton, Brian & Lloyd, Alun L., 2014. "Optimal two-phase vaccine allocation to geographically different regions under uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 208-219.
    5. Teytelman, Anna & Larson, Richard C., 2012. "Modeling influenza progression within a continuous-attribute heterogeneous population," European Journal of Operational Research, Elsevier, vol. 220(1), pages 238-250.
    6. J R P Townshend & H S Turner, 2000. "Analysing the effectiveness of Chlamydia screening," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(7), pages 812-824, July.
    7. E. Lerzan Örmeci & Evrim Didem Güneş & Derya Kunduzcu, 2016. "A Modeling Framework for Control of Preventive Services," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 227-244, May.
    8. D Evenden & P R Harper & S C Brailsford & V Harindra, 2006. "Improving the cost-effectiveness of Chlamydia screening with targeted screening strategies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(12), pages 1400-1412, December.
    9. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
    10. Evrim Didem Güneş & Egemen Lerzan Örmeci & Derya Kunduzcu, 2015. "Preventing and Diagnosing Colorectal Cancer with a Limited Colonoscopy Resource," Production and Operations Management, Production and Operations Management Society, vol. 24(1), pages 1-20, January.
    11. Lasry, Arielle & Zaric, Gregory S. & Carter, Michael W., 2007. "Multi-level resource allocation for HIV prevention: A model for developing countries," European Journal of Operational Research, Elsevier, vol. 180(2), pages 786-799, July.
    12. Elisa F. Long & Naveen K. Vaidya & Margaret L. Brandeau, 2008. "Controlling Co-Epidemics: Analysis of HIV and Tuberculosis Infection Dynamics," Operations Research, INFORMS, vol. 56(6), pages 1366-1381, December.
    13. Büyüktahtakın, İ. Esra & des-Bordes, Emmanuel & Kıbış, Eyyüb Y., 2018. "A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1046-1063.
    14. Viana, J. & Brailsford, S.C. & Harindra, V. & Harper, P.R., 2014. "Combining discrete-event simulation and system dynamics in a healthcare setting: A composite model for Chlamydia infection," European Journal of Operational Research, Elsevier, vol. 237(1), pages 196-206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naveed Chehrazi & Lauren E. Cipriano & Eva A. Enns, 2019. "Dynamics of Drug Resistance: Optimal Control of an Infectious Disease," Operations Research, INFORMS, vol. 67(3), pages 619-650, May.
    2. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    3. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    4. Mohammad Reza Davahli & Waldemar Karwowski & Redha Taiar, 2020. "A System Dynamics Simulation Applied to Healthcare: A Systematic Review," IJERPH, MDPI, vol. 17(16), pages 1-27, August.
    5. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    6. Büyüktahtakın, İ. Esra & des-Bordes, Emmanuel & Kıbış, Eyyüb Y., 2018. "A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1046-1063.
    7. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    8. Zhang, Jianghua & Long, Daniel Zhuoyu & Li, Yuchen, 2023. "A reliable emergency logistics network for COVID-19 considering the uncertain time-varying demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    9. Lane, David & Husemann, Elke & Holland, Darren & Khaled, Abdul, 2019. "Understanding foodborne transmission mechanisms for Norovirus: A study for the UK's Food Standards Agency," European Journal of Operational Research, Elsevier, vol. 275(2), pages 721-736.
    10. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    11. Negar Darabi & Niyousha Hosseinichimeh, 2020. "System dynamics modeling in health and medicine: a systematic literature review," System Dynamics Review, System Dynamics Society, vol. 36(1), pages 29-73, January.
    12. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    13. Alberto Sardi & Enrico Sorano, 2019. "Dynamic Performance Management: An Approach for Managing the Common Goods," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    14. Brailsford, Sally & Vissers, Jan, 2011. "OR in healthcare: A European perspective," European Journal of Operational Research, Elsevier, vol. 212(2), pages 223-234, July.
    15. Viana, J. & Brailsford, S.C. & Harindra, V. & Harper, P.R., 2014. "Combining discrete-event simulation and system dynamics in a healthcare setting: A composite model for Chlamydia infection," European Journal of Operational Research, Elsevier, vol. 237(1), pages 196-206.
    16. Teytelman, Anna & Larson, Richard C., 2012. "Modeling influenza progression within a continuous-attribute heterogeneous population," European Journal of Operational Research, Elsevier, vol. 220(1), pages 238-250.
    17. A. Sardi & E. Sorano, 2021. "Dynamic Performance Management: An Approach for Managing the Common Goods," Papers 2102.04090, arXiv.org.
    18. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    19. Özge Karanfil & Niyousha Hosseinichimeh & Jim Duggan, 2020. "System dynamics and bio‐medical modeling," System Dynamics Review, System Dynamics Society, vol. 36(4), pages 389-396, October.
    20. Yuqian Xu & Lingjiong Zhu & Michael Pinedo, 2020. "Operational Risk Management: A Stochastic Control Framework with Preventive and Corrective Controls," Operations Research, INFORMS, vol. 68(6), pages 1804-1825, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:113-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.