IDEAS home Printed from https://ideas.repec.org/a/kap/ecopln/v58y2025i1d10.1007_s10644-024-09841-4.html
   My bibliography  Save this article

How to efficiently enhance sustainable development through the digital economy? Evidence from 60 countries

Author

Listed:
  • Jingyun Li

    (Tsinghua University)

  • Zhenran Li

    (Nanjing University of Aeronautics and Astronautics)

  • Feng Dong

    (Tsinghua University
    China University of Mining and Technology)

  • Haitao Wu

    (Hainan University
    Hainan University)

Abstract

The digital economy (DIE) offers enterprises and workers an adaptive, networked and collaborative environment that can help alleviate the pressure for governments to balance economic development and environmental governance. In this study, we calculated the sustainable production efficiency (SPE) of 60 countries from a new perspective and analyzed the mechanism of the DIE on the SPE. Our results were as follows: (1) the SPE of each country was increasing, and the sustainable technology gap of developed countries was the largest. Our analysis indicated that most regions need to improve efficiency at the technical and management levels. (2) The DIE significantly promoted the SPE, and the effect increased linearly with the DIE. (3) The positive effects of the DIE on the SPE were mainly from upgrading of industrial structure and reducing energy intensity. (4) The positive effects in developing and landlocked countries were greater than those in developed and coastal countries. The positive effects in Asia, Oceania, and the Americas were more significant than those in other continents.

Suggested Citation

  • Jingyun Li & Zhenran Li & Feng Dong & Haitao Wu, 2025. "How to efficiently enhance sustainable development through the digital economy? Evidence from 60 countries," Economic Change and Restructuring, Springer, vol. 58(1), pages 1-29, February.
  • Handle: RePEc:kap:ecopln:v:58:y:2025:i:1:d:10.1007_s10644-024-09841-4
    DOI: 10.1007/s10644-024-09841-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10644-024-09841-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10644-024-09841-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Wei-Liang Zhang & Li-Ying Song & Muhammad Ilyas, 2023. "Author Correction: Can the digital economy promote fiscal effort?: Empirical evidence from Chinese cities," Economic Change and Restructuring, Springer, vol. 56(5), pages 3733-3734, October.
    3. Zhou, Sheng & Xu, Zhiwei, 2022. "Energy efficiency assessment of RCEP member states: A three-stage slack based measurement DEA with undesirable outputs," Energy, Elsevier, vol. 253(C).
    4. Chen, Yongmin, 2020. "Improving market performance in the digital economy," China Economic Review, Elsevier, vol. 62(C).
    5. Yang, Zikun & Zhang, Mingming & Liu, Liyun & Zhou, Dequn, 2022. "Can renewable energy investment reduce carbon dioxide emissions? Evidence from scale and structure," Energy Economics, Elsevier, vol. 112(C).
    6. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    7. Nomita Pachar & Jyoti Dhingra Darbari & Kannan Govindan & P. C. Jha, 2022. "Sustainable performance measurement of Indian retail chain using two-stage network DEA," Annals of Operations Research, Springer, vol. 315(2), pages 1477-1515, August.
    8. Wei-Liang Zhang & Li-Ying Song & Muhammad Ilyas, 2023. "Can the digital economy promote fiscal effort?: Empirical evidence from Chinese cities," Economic Change and Restructuring, Springer, vol. 56(5), pages 3501-3525, October.
    9. Verhoef, Peter C. & Broekhuizen, Thijs & Bart, Yakov & Bhattacharya, Abhi & Qi Dong, John & Fabian, Nicolai & Haenlein, Michael, 2021. "Digital transformation: A multidisciplinary reflection and research agenda," Journal of Business Research, Elsevier, vol. 122(C), pages 889-901.
    10. Shahiduzzaman, Md. & Alam, Khorshed, 2013. "Changes in energy efficiency in Australia: A decomposition of aggregate energy intensity using logarithmic mean Divisia approach," Energy Policy, Elsevier, vol. 56(C), pages 341-351.
    11. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    12. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    13. Luo, Kang & Liu, Yaobin & Chen, Pei-Fen & Zeng, Mingli, 2022. "Assessing the impact of digital economy on green development efficiency in the Yangtze River Economic Belt," Energy Economics, Elsevier, vol. 112(C).
    14. Taghizadeh-Hesary, Farhad & Dong, Kangyin & Zhao, Congyu & Phoumin, Han, 2023. "Can financial and economic means accelerate renewable energy growth in the climate change era? The case of China," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 730-743.
    15. Ma, Qiang & Tariq, Muhammad & Mahmood, Haider & Khan, Zeeshan, 2022. "The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development," Technology in Society, Elsevier, vol. 68(C).
    16. Wenfei Song & Xianfeng Han, 2024. "Does the digital economy contribute to China’s energy transition?," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-25, October.
    17. Jinlin Li & Litai Chen & Ying Chen & Jiawen He, 2022. "Digital economy, technological innovation, and green economic efficiency—Empirical evidence from 277 cities in China," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(3), pages 616-629, April.
    18. Kais Saidi & Hassen Toumi & Saida Zaidi, 2017. "Impact of Information Communication Technology and Economic Growth on the Electricity Consumption: Empirical Evidence from 67 Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 8(3), pages 789-803, September.
    19. Nerlinger, Martin & Utz, Sebastian, 2022. "The impact of the Russia-Ukraine conflict on energy firms: A capital market perspective," Finance Research Letters, Elsevier, vol. 50(C).
    20. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    21. Wen Chen, 2023. "The impact of digital economy development on innovation in renewable energy technologies," Economic Change and Restructuring, Springer, vol. 56(6), pages 4285-4308, December.
    22. Minjie Li & Mengjun Meng & Yihui Chen, 2024. "The impact of the digital economy on green innovation: the moderating role of fiscal decentralization," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-33, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyang Yu & Jinchao Wang & Jiajun Xu & Binghao Ding, 2025. "Does digital economy agglomeration promote green economy efficiency? A spatial spillover and spatial heterogeneity perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 7379-7406, March.
    2. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).
    3. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    4. Saia, Artjom, 2023. "Digitalization and CO2 emissions: Dynamics under R&D and technology innovation regimes," Technology in Society, Elsevier, vol. 74(C).
    5. Umair Kashif & Junguo Shi & Sihan Li & Qinqin Wu & Qiuya Song & Shanshan Dou & Mengjie Wei & Snovia Naseem, 2024. "Navigating the digital divide: unraveling the impact of ICT usage and supply on SO2 emissions in China’s Yangtze River Delta," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    6. Wei Yang & Qiuxia Chen & Qiuqi Guo & Xiaoting Huang, 2022. "Towards Sustainable Development: How Digitalization, Technological Innovation, and Green Economic Development Interact with Each Other," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    7. Kun Liu & Xuemin Liu & Zihao Wu, 2024. "Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    8. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    9. Xiaomei Li & Huchuan Deng & Xuanrui Yu & Jiehong Li & Yang Yu, 2024. "Research on the Coordinated Development of Digital Economy, Green Technology Innovation, and Ecological Environment Quality—A Case Study of China," Sustainability, MDPI, vol. 16(11), pages 1-27, June.
    10. Lyu, Yanwei & Zhang, Jinning & Wang, Wenqiang & Li, Yutao & Geng, Yong, 2024. "Toward low carbon development through digital economy: A new perspective of factor market distortion," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    11. Liang Liu & Yuhan Zhang & Xiujuan Gong & Mengyue Li & Xue Li & Donglin Ren & Pan Jiang, 2022. "Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    12. Sun, Chuanwang & Khan, Anwar & Xue, Juntao & Huang, Xiaoyong, 2024. "Are digital economy and financial structure driving renewable energy technology innovations: A major eight countries perspective," Applied Energy, Elsevier, vol. 362(C).
    13. Xiaoli Wu & Yaoyao Qin & Qizhuo Xie & Yunyi Zhang, 2022. "The Mediating and Moderating Effects of the Digital Economy on PM 2.5 : Evidence from China," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    14. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Cai, Hechang & Wang, Zilong & Ji, Yi & Xu, Liuyang, 2024. "Digitalization and innovation: How does the digital economy drive technology transfer in China?," Economic Modelling, Elsevier, vol. 136(C).
    16. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    17. Liu, Baoliu & Huang, Yujie & Chen, Mengmei & Lan, Zirui, 2024. "Towards sustainability: How does the digital-real integration affect regional green development efficiency?," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 42-59.
    18. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    19. Ziyu Meng & Wen-Bo Li & Chaofan Chen & Chenghua Guan, 2023. "Carbon Emission Reduction Effects of the Digital Economy: Mechanisms and Evidence from 282 Cities in China," Land, MDPI, vol. 12(4), pages 1-21, March.
    20. Wu, Qingyang & Li, Shanhong, 2024. "Decarbonization by digits: How data factors drive nonlinear sustainable dynamics in manufacturing," Applied Energy, Elsevier, vol. 374(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:ecopln:v:58:y:2025:i:1:d:10.1007_s10644-024-09841-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.