IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i6d10.1007_s10614-024-10672-8.html
   My bibliography  Save this article

Modelling Mixed-Frequency Time Series with Structural Change

Author

Listed:
  • Adrian Matthew G. Glova

    (University of the Philippines Diliman)

  • Erniel B. Barrios

    (Monash University Malaysia)

Abstract

Predictive ability of time series models is easily compromised in the presence of structural breaks, common among financial and economic variables amidst market shocks and policy regime shifts. We address this problem by estimating a semiparametric mixed-frequency model, that incorporate high frequency data either in the conditional mean or the conditional variance equation. The inclusion of high frequency data through non-parametric smoothing functions complements the low frequency data to capture possible non-linear relationships triggered by the structural change. Simulation studies indicate that in the presence of structural change, the varying frequency in the mean model provides improved in-sample fit and superior out-of-sample predictive ability relative to low frequency time series models. These hold across a broad range of simulation settings, such as varying time series lengths, nature of structural break points, and temporal dependencies. We illustrate the relative advantage of the method in predicting stock returns and foreign exchange rates in the case of the Philippines.

Suggested Citation

  • Adrian Matthew G. Glova & Erniel B. Barrios, 2025. "Modelling Mixed-Frequency Time Series with Structural Change," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3237-3258, June.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10672-8
    DOI: 10.1007/s10614-024-10672-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10672-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10672-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edviges Coelho & Luis C. Nunes, 2011. "Forecasting mortality in the event of a structural change," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(3), pages 713-736, July.
    2. Gantungalag Altansukh & Denise R. Osborn, 2022. "Using structural break inference for forecasting time series," Empirical Economics, Springer, vol. 63(1), pages 1-41, July.
    3. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    4. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
    5. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    6. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    7. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    8. Opsomer, Jean D., 2000. "Asymptotic Properties of Backfitting Estimators," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 166-179, May.
    9. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    10. Lumsdaine, Robin L. & Okui, Ryo & Wang, Wendun, 2023. "Estimation of panel group structure models with structural breaks in group memberships and coefficients," Journal of Econometrics, Elsevier, vol. 233(1), pages 45-65.
    11. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    12. Vasile Brătian & Ana-Maria Acu & Diana Marieta Mihaiu & Radu-Alexandru Șerban, 2022. "Geometric Brownian Motion (GBM) of Stock Indexes and Financial Market Uncertainty in the Context of Non-Crisis and Financial Crisis Scenarios," Mathematics, MDPI, vol. 10(3), pages 1-23, January.
    13. Yiannis Karavias & Paresh Kumar Narayan & Joakim Westerlund, 2023. "Structural Breaks in Interactive Effects Panels and the Stock Market Reaction to COVID-19," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 653-666, July.
    14. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    15. Gawon Yoon, 1998. "Forecasting with structural change: why is the random walk model so damned difficult to beat?," Applied Economics Letters, Taylor & Francis Journals, vol. 5(1), pages 41-42.
    16. Abolfazl Safikhani & Ali Shojaie, 2022. "Joint Structural Break Detection and Parameter Estimation in High-Dimensional Nonstationary VAR Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 251-264, January.
    17. Likai Chen & Weining Wang & Wei Biao Wu, 2022. "Inference of Breakpoints in High-dimensional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1951-1963, October.
    18. Amsler, Christine & Lee, Junsoo, 1995. "An LM Test for a Unit Root in the Presence of a Structural Change," Econometric Theory, Cambridge University Press, vol. 11(2), pages 359-368, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    2. Yoonsuk Lee & B. Wade Brorsen, 2017. "Permanent Breaks and Temporary Shocks in a Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 255-270, February.
    3. Monira Essa Aloud, 2016. "Time Series Analysis Indicators under Directional Changes: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 55-64.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, September.
    5. Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
    6. Siem Jan Koopman & Soon Yip Wong, 2006. "Extracting Business Cycles using Semi-parametric Time-varying Spectra with Applications to US Macroeconomic Time Series," Tinbergen Institute Discussion Papers 06-105/4, Tinbergen Institute.
    7. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    8. Domenico Cucina & Manuel Rizzo & Eugen Ursu, 2018. "Identification of multiregime periodic autotregressive models by genetic algorithms," Post-Print hal-03187870, HAL.
    9. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
    10. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    11. Bredin, Don & Hyde, Stuart & Muckley, Cal, 2014. "A microstructure analysis of the carbon finance market," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 222-234.
    12. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    13. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    14. Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
    15. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2022. "Tests for Random Coefficient Variation in Vector Autoregressive Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 1-35, Emerald Group Publishing Limited.
    16. Barbara Rossi, 2021. "Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them," Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
    17. Cubadda, Gianluca & Grassi, Stefano & Guardabascio, Barbara, 2025. "The time-varying Multivariate Autoregressive Index model," International Journal of Forecasting, Elsevier, vol. 41(1), pages 175-190.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    19. Adriatik Hoxha, 2016. "The Switch to Near-Rational Wage-Price Setting Behaviour: The Case of United Kingdom," EuroEconomica, Danubius University of Galati, issue 1(35), pages 127-148, may.
    20. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10672-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.