IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i540p1951-1963.html
   My bibliography  Save this article

Inference of Breakpoints in High-dimensional Time Series

Author

Listed:
  • Likai Chen
  • Weining Wang
  • Wei Biao Wu

Abstract

For multiple change-points detection of high-dimensional time series, we provide asymptotic theory concerning the consistency and the asymptotic distribution of the breakpoint statistics and estimated break sizes. The theory backs up a simple two-step procedure for detecting and estimating multiple change-points. The proposed two-step procedure involves the maximum of a MOSUM (moving sum) type statistics in the first step and a CUSUM (cumulative sum) refinement step on an aggregated time series in the second step. Thus, for a fixed time-point, we can capture both the biggest break across different coordinates and aggregating simultaneous breaks over multiple coordinates. Extending the existing high-dimensional Gaussian approximation theorem to dependent data with jumps, the theory allows us to characterize the size and power of our multiple change-point test asymptotically. Moreover, we can make inferences on the breakpoints estimates when the break sizes are small. Our theoretical setup incorporates both weak temporal and strong or weak cross-sectional dependence and is suitable for heavy-tailed innovations. A robust long-run covariance matrix estimation is proposed, which can be of independent interest. An application on detecting structural changes of the U.S. unemployment rate is considered to illustrate the usefulness of our method.

Suggested Citation

  • Likai Chen & Weining Wang & Wei Biao Wu, 2022. "Inference of Breakpoints in High-dimensional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1951-1963, October.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1951-1963
    DOI: 10.1080/01621459.2021.1893178
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1893178
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1893178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    2. Gao, Jiti & Peng, Bin & Wu, Wei Biao & Yan, Yayi, 2024. "Time-varying multivariate causal processes," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Victor Chernozhukov & Iv'an Fern'andez-Val & Chen Huang & Weining Wang, 2024. "Arellano-Bond LASSO Estimator for Dynamic Linear Panel Models," Papers 2402.00584, arXiv.org, revised Oct 2024.
    4. Jianqing Fan & Weining Wang & Yue Zhao, 2024. "Conditional nonparametric variable screening by neural factor regression," Papers 2408.10825, arXiv.org.
    5. Tariku Tesfaye Haile & Fenglin Tian & Ghada AlNemer & Boping Tian, 2024. "Multiscale Change Point Detection for Univariate Time Series Data with Missing Value," Mathematics, MDPI, vol. 12(20), pages 1-22, October.
    6. Likai Chen & Georg Keilbar & Liangjun Su & Weining Wang, 2023. "Inference on many jumps in nonparametric panel regression models," Papers 2312.01162, arXiv.org, revised Aug 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1951-1963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.