IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-90532022000044b001.html
   My bibliography  Save this book chapter

Tests for Random Coefficient Variation in Vector Autoregressive Models

In: Essays in Honour of Fabio Canova

Author

Listed:
  • Dante Amengual
  • Gabriele Fiorentini
  • Enrique Sentana

Abstract

The authors propose the information matrix test to assess the constancy of mean and variance parameters in vector autoregressions (VAR). They additively decompose it into several orthogonal components: conditional heteroskedasticity and asymmetry of the innovations, and their unconditional skewness and kurtosis. Their Monte Carlo simulations explore both its finite size properties and its power against i.i.d. coefficients, persistent but stationary ones, and regime switching. Their procedures detect variation in the autoregressive coefficients and residual covariance matrix of a VAR for the US GDP growth rate and the statistical discrepancy, but they fail to detect any covariation between those two sets of coefficients.

Suggested Citation

  • Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2022. "Tests for Random Coefficient Variation in Vector Autoregressive Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 1-35, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-90532022000044b001
    DOI: 10.1108/S0731-90532022000044B001
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-90532022000044B001/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-90532022000044B001/full/epub?utm_source=repec&utm_medium=feed&utm_campaign=repec&title=10.1108/S0731-90532022000044B001
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-90532022000044B001/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/S0731-90532022000044B001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    2. Enrique Sentana, 1995. "Quadratic ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(4), pages 639-661.
    3. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    4. Nicholls, D. F. & Quinn, B. G., 1981. "Multiple autoregressive models with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 11(2), pages 185-198, June.
    5. Martín Almuzara & Gabriele Fiorentini & Enrique Sentana, 2023. "Aggregate Output Measurements: A Common Trend Approach," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 3-33, Emerald Group Publishing Limited.
    6. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    7. Jeremy J. Nalewaik, 2011. "The Income- and Expenditure-Side Estimates of U.S. Output Growth — An Update to 2011Q2," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(2 (Fall)), pages 385-411.
    8. Martín Almuzara & Dante Amengual & Enrique Sentana, 2019. "Normality tests for latent variables," Quantitative Economics, Econometric Society, vol. 10(3), pages 981-1017, July.
    9. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    10. Jeremy J. Nalewaik, 2011. "The Income- and Expenditure-Side Estimates of U.S. Output Growth — An Update to 2011Q2," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 42(2 (Fall)), pages 385-411.
    11. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    12. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    13. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2021. "Multivariate Hermite polynomials and information matrix tests," Working Paper series 21-12, Rimini Centre for Economic Analysis.
    14. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    15. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
    16. Kiefer, Nicholas M. & Salmon, Mark, 1983. "Testing normality in econometric models," Economics Letters, Elsevier, vol. 11(1-2), pages 123-127.
    17. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    18. Anil K. Bera & Sangkyu Lee, 1993. "Information Matrix Test, Parameter Heterogeneity and ARCH: A Synthesis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(1), pages 229-240.
    19. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    20. Bera, A.K. & Lee, S., 1993. "Information matrix test, parameter heterogeneity and ARCH : A synthesis," Other publications TiSEM bf71e9fe-03a8-48f0-8a72-0, Tilburg University, School of Economics and Management.
    21. Abdelhadi Akharif & Marc Hallin, 2003. "Efficient detection of random coefficients in autoregressive models," ULB Institutional Repository 2013/127956, ULB -- Universite Libre de Bruxelles.
    22. Marine Carrasco & Liang Hu & Werner Ploberger, 2014. "Optimal Test for Markov Switching Parameters," Econometrica, Econometric Society, vol. 82(2), pages 765-784, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    2. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248, Emerald Group Publishing Limited.
    3. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2022. "Moment tests of independent components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 429-474, May.
    4. Punzi, Maria Teresa, 2016. "Financial cycles and co-movements between the real economy, finance and asset price dynamics in large-scale crises," FinMaP-Working Papers 61, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    5. Jin Zhang and David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    6. Ray C. Fair & Robert J. Shiller, 1987. "Econometric Modeling as Information Aggregation," NBER Working Papers 2233, National Bureau of Economic Research, Inc.
    7. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
    8. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    9. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    10. Luc Anselin, 1988. "Model Validation in Spatial Econometrics: A Review and Evaluation of Alternative Approaches," International Regional Science Review, , vol. 11(3), pages 279-316, December.
    11. Kang, Sang Hoon & Islam, Faridul & Kumar Tiwari, Aviral, 2019. "The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 90-101.
    12. Kenneth W. Clements & Patricia Wang, 2003. "Who Cites What?," The Economic Record, The Economic Society of Australia, vol. 79(245), pages 229-244, June.
    13. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    14. Davila, Alberto & Pagan, Jose A. & Soydemir, Gokce, 2002. "The short-term and long-term deterrence effects of INS border and interior enforcement on undocumented immigration," Journal of Economic Behavior & Organization, Elsevier, vol. 49(4), pages 459-472, December.
    15. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.
    16. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    17. Gabriel Rodríguez & Renato Vassallo, 2022. "Time Evolution of External Shocks on Macroeconomic Fluctuations in Pacific Alliance Countries: Empirical Application using TVP-VAR-SV Models," Documentos de Trabajo / Working Papers 2022-508, Departamento de Economía - Pontificia Universidad Católica del Perú.
    18. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    19. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    20. T. P. Sinha, 2022. "A Macro-Econometric VAR Model of India Incorporating Black Income," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(3), pages 629-660, September.

    More about this item

    Keywords

    Gross domestic product; gross domestic income; Hessian matrix; information matrix test; outer product of the score; C32; C52; E01;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-90532022000044b001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.