IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i6d10.1007_s10614-024-10671-9.html
   My bibliography  Save this article

Enhancing Stock Market Prediction Using Gradient Boosting Neural Network: A Hybrid Approach

Author

Listed:
  • Taraneh Shahin

    (Universidad Rey Juan Carlos)

  • María Teresa Ballestar de las Heras

    (Universidad Rey Juan Carlos)

  • Ismael Sanz

    (Universidad Rey Juan Carlos)

Abstract

This paper introduces an innovative paradigm in cryptocurrency market analysis and prediction by exploiting the potency of the gradient boosting neural network (GBNN). This pioneering machine learning model amalgamates neural networks and gradient boosting techniques to offer a robust methodology. To enhance the GBNN's predictive capabilities, we enriched its input data with a spectrum of technical indicators. Moreover, we employed the support vector regressor for feature engineering, contributing to the exclusion of insignificant variables. We coined the term "hybrid approach" to describe our pipeline, employing it to train the GBNN model using historical cryptocurrency data. A multitude of experiments were conducted to demonstrate the superior performance of our approach in terms of model accuracy and error on previously unseen data. Notably, our proposed method outperformed state-of-the-art machine learning models, showcasing its effectiveness.

Suggested Citation

  • Taraneh Shahin & María Teresa Ballestar de las Heras & Ismael Sanz, 2025. "Enhancing Stock Market Prediction Using Gradient Boosting Neural Network: A Hybrid Approach," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3207-3235, June.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10671-9
    DOI: 10.1007/s10614-024-10671-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10671-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10671-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of the Augmented Dickey-Fuller Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 277-280, July.
    2. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
    3. Qiu, Rui & Liu, Jing & Li, Yan, 2023. "Long-term adjusted volatility: Powerful capability in forecasting stock market returns," International Review of Financial Analysis, Elsevier, vol. 86(C).
    4. Liu, Jing & Chen, Zhonglu, 2023. "How do stock prices respond to the leading economic indicators? Analysis of large and small shocks," Finance Research Letters, Elsevier, vol. 51(C).
    5. Dai, Zhifeng & Zhu, Huan & Kang, Jie, 2021. "New technical indicators and stock returns predictability," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 127-142.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    2. Yin-Wong Cheung, 2007. "An empirical model of daily highs and lows," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 1-20.
    3. Mark J Holmes & Jesús Otero & Theodore Panagiotidis, 2018. "Climbing the property ladder: An analysis of market integration in London property prices," Urban Studies, Urban Studies Journal Limited, vol. 55(12), pages 2660-2681, September.
    4. Vigfusson, Robert, 1997. "Switching between Chartists and Fundamentalists: A Markov Regime-Switching Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 291-305, October.
    5. Joshua Schwartzstein & Adi Sunderam, 2021. "Using Models to Persuade," American Economic Review, American Economic Association, vol. 111(1), pages 276-323, January.
    6. Dammak, Wael & Frikha, Wajdi & Souissi, Mohamed Naceur, 2024. "Market turbulence and investor decision-making in currency option market," The Journal of Economic Asymmetries, Elsevier, vol. 30(C).
    7. Chi-Wei Su, 2012. "The relationship between exchange rate and macroeconomic variables in China," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 30(1), pages 33-56.
    8. Francis Ahking, 2003. "Efficient unit root tests of real exchange rates in the post-Bretton Woods era," Economics Bulletin, AccessEcon, vol. 6(7), pages 1-12.
    9. Peter Rowland & Hugo OLiveros C., 2003. "Colombian Purchasing Power Parity Analysed Using a Framework of Multivariate Cointegration," Borradores de Economia 252, Banco de la Republica de Colombia.
    10. Wu, Po-Chin & Liu, Shiao-Yen & Pan, Sheng-Chieh, 2013. "Nonlinear bilateral trade balance-fundamentals nexus: A panel smooth transition regression approach," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 318-329.
    11. Maryam Motamedi & Jessica Dawson & Na Li & Douglas G Down & Nancy M Heddle, 2024. "Demand forecasting for platelet usage: From univariate time series to multivariable models," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-30, April.
    12. Rogelio Varela & Lázaro Cruz, 2016. "Inversión extranjera directa y tasa de interés en México: un análisis dinámico," Nóesis. Revista de Ciencias Sociales y Humanidades, Nóesis. Revista de Ciencias Sociales y Humanidades, vol. 25, pages 127-150, 50.
    13. Bohm, Volker & Wenzelburger, Jan, 2005. "On the performance of efficient portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 721-740, April.
    14. Reitz, Stefan, 2006. "On the predictive content of technical analysis," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 121-137, August.
    15. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
    16. Trifan, Emanuela, 2004. "Entscheidungsregeln und ihr Einfluss auf den Aktienkurs," Darmstadt Discussion Papers in Economics 131, Darmstadt University of Technology, Department of Law and Economics.
    17. Cheung, Yin-Wong & Chinn, Menzie D. & Qian, XingWang, 2014. "The structural behavior of China–US trade flows," BOFIT Discussion Papers 23/2014, Bank of Finland Institute for Emerging Economies (BOFIT).
    18. Frenkel, Michael & Pierdzioch, Christian & Stadtmann, Georg, 2006. "The transparency of the ECB policy: What can we learn from its foreign exchange market interventions?," Journal of Policy Modeling, Elsevier, vol. 28(2), pages 141-156, February.
    19. Holmes, Mark J. & Otero, Jesús & Panagiotidis, Theodore, 2013. "On the dynamics of gasoline market integration in the United States: Evidence from a pair-wise approach," Energy Economics, Elsevier, vol. 36(C), pages 503-510.
    20. Baviera, Roberto & Pasquini, Michele & Serva, Maurizio & Vergni, Davide & Vulpiani, Angelo, 2002. "Antipersistent Markov behavior in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 565-576.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10671-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.