IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i6d10.1007_s10614-024-10670-w.html
   My bibliography  Save this article

Financial Series Forecasting: A New Fuzzy Inference System for Crisp Values and Interval-Valued Predictions

Author

Listed:
  • Kaike Sa Teles Rocha Alves

    (Federal University of Juiz de Fora)

  • Rosangela Ballini

    (University of Campinas)

  • Eduardo Pestana de Aguiar

    (Federal University of Juiz de Fora)

Abstract

Fuzzy inference systems emerged as a machine learning model that provides accurate and explainable results. Two fuzzy inference systems are reported in the literature, Mamdani and Takagi–Sugeno–Kang. Mamdani implements fuzzy sets in the consequent part and provides more explainable results. On the other hand, Takagi–Sugeno–Kang is more suitable for modeling more complex data because it uses polynomial functions. However, there is no unique method to design Takagi–Sugeno–Kang rules in the literature, and some limitations can be found in the proposed models, such as no direct control over the number of rules, many hyper-parameters and increased complexity due to hybridization to form Takagi–Sugeno–Kang rules. To overcome these shortcomings, this paper proposes a new Takagi–Sugeno–Kang. The user can define the number of rules in the introduced model considering the accuracy-interpretability trade-off. Furthermore, the model has a lower number of hyper-parameters. Two filtering approaches are implemented to compute the consequent parameters, the recursive least squares, and the weighted recursive least squares. The model is applied to six relevant financial series, S &P 500, NASDAQ, TAIEX, CSI 300, KOSPI 200, and NYSE. The concept of interval-valued data is implemented to estimate the volatility of the economic series as a complement to classical forecasting. The results support that predictions of interval-valued data can be implemented as a complement to crisp prediction in defining decision-making strategies. The proposed approach’s results are compared with those of classical models and evolving Fuzzy Systems, and the model presented satisfactory results. The code of the proposed models is given at https://github.com/kaikerochaalves/NTSK.git .

Suggested Citation

  • Kaike Sa Teles Rocha Alves & Rosangela Ballini & Eduardo Pestana de Aguiar, 2025. "Financial Series Forecasting: A New Fuzzy Inference System for Crisp Values and Interval-Valued Predictions," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3673-3721, June.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10670-w
    DOI: 10.1007/s10614-024-10670-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10670-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10670-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    2. Marc Sanchez-Roger & María Dolores Oliver-Alfonso & Carlos Sanchís-Pedregosa, 2019. "Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises," Mathematics, MDPI, vol. 7(11), pages 1-22, November.
    3. L. Billard & E. Diday, 2006. "Descriptive statistics for interval-valued observations in the presence of rules," Computational Statistics, Springer, vol. 21(2), pages 187-210, June.
    4. Mojtaba Nabipour & Pooyan Nayyeri & Hamed Jabani & Amir Mosavi, 2020. "Deep learning for Stock Market Prediction," Papers 2004.01497, arXiv.org.
    5. Gaurang Sonkavde & Deepak Sudhakar Dharrao & Anupkumar M. Bongale & Sarika T. Deokate & Deepak Doreswamy & Subraya Krishna Bhat, 2023. "Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications," IJFS, MDPI, vol. 11(3), pages 1-22, July.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Jiayu Qiu & Bin Wang & Changjun Zhou, 2020. "Forecasting stock prices with long-short term memory neural network based on attention mechanism," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    8. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    9. Arroyo, Javier & Maté, Carlos, 2009. "Forecasting histogram time series with k-nearest neighbours methods," International Journal of Forecasting, Elsevier, vol. 25(1), pages 192-207.
    10. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gloria Gonzalez-Rivera & Javier Arroyo & Carlos Mate, 2011. "Forecasting with Interval and Histogram Data. Some Financial Applications," Working Papers 201438, University of California at Riverside, Department of Economics.
    2. He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.
    3. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    4. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    5. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    6. Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016. "Forecasting US real private residential fixed investment using a large number of predictors," Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
    7. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    8. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    9. Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
    10. Tao XIONG & LI Chongguang & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    11. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    12. Massimiliano Marzo & Paolo Zagaglia, 2010. "Volatility forecasting for crude oil futures," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1587-1599.
    13. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    14. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    15. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, April.
    16. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    17. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    18. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
    19. Rumler, Fabio & Valderrama, Maria Teresa, 2010. "Comparing the New Keynesian Phillips Curve with time series models to forecast inflation," The North American Journal of Economics and Finance, Elsevier, vol. 21(2), pages 126-144, August.
    20. Giot, Pierre & Petitjean, Mikael, 2007. "The information content of the Bond-Equity Yield Ratio: Better than a random walk?," International Journal of Forecasting, Elsevier, vol. 23(2), pages 289-305.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10670-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.