IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v29y2007i3p283-312.html
   My bibliography  Save this article

Approximation of jump diffusions in finance and economics

Author

Listed:
  • Nicola Bruti-Liberati
  • Eckhard Platen

Abstract

In finance and economics the key dynamics are often specified via stochastic differential equations (SDEs) of jump-diffusion type. The class of jump-diffusion SDEs that admits explicit solutions is rather limited. Consequently, discrete time approximations are required. In this paper we give a survey of strong and weak numerical schemes for SDEs with jumps. Strong schemes provide pathwise approximations and therefore can be employed in scenario analysis, filtering or hedge simulation. Weak schemes are appropriate for problems such as derivative pricing or the evaluation of risk measures and expected utilities. Here only an approximation of the probability distribution of the jump-diffusion process is needed. As a framework for applications of these methods in finance and economics we use the benchmark approach. Strong approximation methods are illustrated by scenario simulations. Numerical results on the pricing of options on an index are presented using weak approximation methods. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Nicola Bruti-Liberati & Eckhard Platen, 2007. "Approximation of jump diffusions in finance and economics," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 283-312, May.
  • Handle: RePEc:kap:compec:v:29:y:2007:i:3:p:283-312
    DOI: 10.1007/s10614-006-9066-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-006-9066-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-006-9066-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151, January.
    2. Kubilius Kestutis & Platen Eckhard, 2002. "Rate of Weak Convergence of the Euler Approximation for Diffusion Processes with Jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 8(1), pages 83-96, December.
    3. Mark Craddock & David Heath & Eckhard Platen, 1999. "Numerical Inversion of Laplace Transforms: A Survey of Techniques with Applications to Derivative Pricing," Research Paper Series 27, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Guyon, Julien, 2006. "Euler scheme and tempered distributions," Stochastic Processes and their Applications, Elsevier, vol. 116(6), pages 877-904, June.
    6. N. Hofmann & Eckhard Platen, 1994. "Stability of weak numerical schemes for stochastic differential equations," Published Paper Series 1994-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    7. Nicola Bruti Liberati & Eckhard Platen, 2004. "On the Efficiency of Simplified Weak Taylor Schemes for Monte Carlo Simulation in Finance," Research Paper Series 114, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Remigijus Mikulevicius & Eckhard Platen, 1988. "Time Discrete Taylor Approximations for Ito Processes with Jump Component," Published Paper Series 1988-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    9. Rama Cont & Ekaterina Voltchkova, 2005. "A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models," Post-Print halshs-00445645, HAL.
    10. Long, John Jr., 1990. "The numeraire portfolio," Journal of Financial Economics, Elsevier, vol. 26(1), pages 29-69, July.
    11. Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Jump-Diffusion Processes," Research Paper Series 157, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jozef Barunik & Cathy Yi-Hsuan Chen & Jan Vecer, 2019. "Sentiment-Driven Stochastic Volatility Model: A High-Frequency Textual Tool for Economists," Papers 1906.00059, arXiv.org.
    2. Mao, Wei & Hu, Liangjian & Mao, Xuerong, 2015. "The existence and asymptotic estimations of solutions to stochastic pantograph equations with diffusion and Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 883-896.
    3. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    4. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    5. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, July.
    6. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    7. Benella, Simone & Consolini, Giuseppe & Stumpo, Mirko & Alberti, Tommaso & Gjerloev, Jesper W., 2022. "Markov property of the Super-MAG auroral electrojet indices," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    2. Nicola Bruti-Liberati & Eckhard Platen, 2006. "On Weak Predictor-Corrector Schemes for Jump-Diffusion Processes in Finance," Research Paper Series 179, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    4. Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Pure Jump Processes," Research Paper Series 164, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Hardy Hulley & Shane Miller & Eckhard Platen, 2005. "Benchmarking and Fair Pricing Applied to Two Market Models," Research Paper Series 155, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Ashkan Nikeghbali & Eckhard Platen, 2008. "On honest times in financial modeling," Papers 0808.2892, arXiv.org.
    7. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    8. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    9. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    10. Xavier Warin, 2016. "The Asset Liability Management problem of a nuclear operator : a numerical stochastic optimization approach," Papers 1611.04877, arXiv.org.
    11. Mikulevicius, Remigijus & Zhang, Changyong, 2011. "On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1720-1748, August.
    12. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    13. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    14. repec:uts:finphd:40 is not listed on IDEAS
    15. Eckhard Platen & Renata Rendek, 2009. "Simulation of Diversified Portfolios in a Continuous Financial Market," Research Paper Series 264, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Mark Davis & SEBastien Lleo, 2008. "Risk-sensitive benchmarked asset management," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 415-426.
    17. Xu, Guoping & Zheng, Harry, 2010. "Basket options valuation for a local volatility jump-diffusion model with the asymptotic expansion method," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 415-422, December.
    18. Cl'ement M'enass'e & Peter Tankov, 2015. "Asymptotic indifference pricing in exponential L\'evy models," Papers 1502.03359, arXiv.org, revised Feb 2015.
    19. Ron Chan & Simon Hubbert, 2014. "Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme," Review of Derivatives Research, Springer, vol. 17(2), pages 161-189, July.
    20. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    21. Okano Yusuke & Yamada Toshihiro, 2019. "A control variate method for weak approximation of SDEs via discretization of numerical error of asymptotic expansion," Monte Carlo Methods and Applications, De Gruyter, vol. 25(3), pages 239-252, September.

    More about this item

    Keywords

    Jump-diffusion processes; Discrete time approximation; Simulation; Strong convergence; Weak convergence; Benchmark approach; Growth Optimal portfolio; Primary 60H10; Secondary 65C05; G10; G13;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:29:y:2007:i:3:p:283-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.