IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/164.html
   My bibliography  Save this paper

On the Strong Approximation of Pure Jump Processes

Author

Abstract

This paper constructs strong discrete time approximations for pure jump processes that can be described by stochastic differential equations. Strong approximations based on jump-adapted time discretizations, which produce no discretization bias, are analyzed. The computational complexity of these approximations is proportional to the jump intensity. Furthermore, by exploiting a stochastic expansion for pure jump processes, higher order discrete time approximations, whose computational complexity is not dependent on the jump intensity, are proposed. The strong order of convergence of the resulting schemes is analyzed.

Suggested Citation

  • Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Pure Jump Processes," Research Paper Series 164, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:164
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-02/QFR-rp164.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Remigijus Mikulevicius & Eckhard Platen, 1988. "Time Discrete Taylor Approximations for Ito Processes with Jump Component," Published Paper Series 1988-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    2. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    3. Kubilius Kestutis & Platen Eckhard, 2002. "Rate of Weak Convergence of the Euler Approximation for Diffusion Processes with Jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 8(1), pages 83-96, December.
    4. Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Jump-Diffusion Processes," Research Paper Series 157, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Nicolas Merener & Paul Glasserman, 2003. "Numerical solution of jump-diffusion LIBOR market models," Finance and Stochastics, Springer, vol. 7(1), pages 1-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    2. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007.
    3. Nicola Bruti-Liberati & Eckhard Platen, 2007. "Approximation of jump diffusions in finance and economics," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 283-312, May.
    4. Nicola Bruti-Liberati & Eckhard Platen, 2006. "On Weak Predictor-Corrector Schemes for Jump-Diffusion Processes in Finance," Research Paper Series 179, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Mikulevicius, Remigijus & Zhang, Changyong, 2011. "On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1720-1748, August.
    6. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    7. Mikulevicius, R., 2012. "On the rate of convergence of simple and jump-adapted weak Euler schemes for Lévy driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2730-2757.
    8. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    9. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005.
    10. Yuan Xia, 2011. "Multilevel Monte Carlo method for jump-diffusion SDEs," Papers 1106.4730, arXiv.org.
    11. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    12. Van Landschoot, Astrid, 2004. "Determinants of euro term structure of credit spreads," Working Paper Series 397, European Central Bank.
    13. Giampaolo Gabbi & Andrea Sironi, 2005. "Which factors affect corporate bonds pricing? Empirical evidence from eurobonds primary market spreads," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 59-74.
    14. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    15. Hong-Ming Yin & Jin Liang & Yuan Wu, 2018. "On a New Corporate Bond Pricing Model with Potential Credit Rating Change and Stochastic Interest Rate," JRFM, MDPI, vol. 11(4), pages 1-12, December.
    16. Cumby, Robert E. & Pastine, Tuvana, 2001. "Emerging market debt: measuring credit quality and examining relative pricing," Journal of International Money and Finance, Elsevier, vol. 20(5), pages 591-609, October.
    17. Chava, Sudheer & Jarrow, Robert, 2008. "Modeling loan commitments," Finance Research Letters, Elsevier, vol. 5(1), pages 11-20, March.
    18. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    19. Nusrat Jahan, 2022. "Macroeconomic Determinants of Corporate Credit Spreads: Evidence from Canada," Carleton Economic Papers 22-07, Carleton University, Department of Economics.
    20. Hailiang Yang, 2000. "An Integrated Risk Management Method: VaR Approach," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 201-219, September.

    More about this item

    Keywords

    pure jump processes; stochastic Taylor expansion; discrete time approximation; simulation; strong convergence;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.