IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.00059.html
   My bibliography  Save this paper

Sentiment-Driven Stochastic Volatility Model: A High-Frequency Textual Tool for Economists

Author

Listed:
  • Jozef Barunik
  • Cathy Yi-Hsuan Chen
  • Jan Vecer

Abstract

We propose how to quantify high-frequency market sentiment using high-frequency news from NASDAQ news platform and support vector machine classifiers. News arrive at markets randomly and the resulting news sentiment behaves like a stochastic process. To characterize the joint evolution of sentiment, price, and volatility, we introduce a unified continuous-time sentiment-driven stochastic volatility model. We provide closed-form formulas for moments of the volatility and news sentiment processes and study the news impact. Further, we implement a simulation-based method to calibrate the parameters. Empirically, we document that news sentiment raises the threshold of volatility reversion, sustaining high market volatility.

Suggested Citation

  • Jozef Barunik & Cathy Yi-Hsuan Chen & Jan Vecer, 2019. "Sentiment-Driven Stochastic Volatility Model: A High-Frequency Textual Tool for Economists," Papers 1906.00059, arXiv.org.
  • Handle: RePEc:arx:papers:1906.00059
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.00059
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.00059. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.