IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

On Honest Times in Financial Modeling

This paper demonstrates the usefulness and importance of the concept of honest times to financial modeling. It studies a financial market with asset prices that follow jump-diffusions with negative jumps. The central building block of the market model is its growth optimal portfolio (GOP), which maximizes the growth rate of strictly positive portfolios. Primary security account prices, when expressed in units of the GOP, turn out to be nonnegative local martingales. In the proposed framework an equivalent risk neutral probability measure need not exist. Derivative prices are obtained as conditional expectations of corresponding future payoffs, with the GOP as numeraire and the real world probability as pricing measure. The time when the global maximum of a portfolio with no positive jumps, when expressed in units of the GOP, is reached, is shown to be a generic representation of an honest time. We provide a general formula for the law of such honest times and compute the conditional distributions of the global maximum of a portfolio in this framework. Moreover, we provide a stochastic integral representation for uniformly integrable martingales whose terminal values are functions of the global maximum of a portfolio. These formulae are model independent and universal. We also specialize our results to some examples where we hedge a payoff that arrives at an honest time.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 229.

in new window

Length: 27 pages
Date of creation: 01 Aug 2008
Date of revision:
Handle: RePEc:uts:rpaper:229
Contact details of provider: Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. R. J. Elliott & M. Jeanblanc & M. Yor, 2000. "On Models of Default Risk," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 179-195.
  2. Dirk Becherer, 2001. "The numeraire portfolio for unbounded semimartingales," Finance and Stochastics, Springer, vol. 5(3), pages 327-341.
  3. Shane Miller & Eckhard Platen, 2004. "A Two-Factor Model for Low Interest Rate Regimes," Asia-Pacific Financial Markets, Springer, vol. 11(1), pages 107-133, March.
  4. Eckhard Platen, 2001. "Arbitrage in Continuous Complete Markets," Research Paper Series 72, Quantitative Finance Research Centre, University of Technology, Sydney.
  5. Eckhard Platen, 2002. "Benchmark Model with Intensity Based Jumps," Research Paper Series 81, Quantitative Finance Research Centre, University of Technology, Sydney.
  6. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151.
  7. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
  8. Amendinger, J├╝rgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," SFB 373 Discussion Papers 1998,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  9. N. Hofmann & E. Platen & M. Schweizer, 1992. "Option Pricing under Incompleteness and Stochastic Volatility," Discussion Paper Serie B 209, University of Bonn, Germany.
  10. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  11. Madan, D. & Roynette, B. & Yor, Marc, 2008. "Option prices as probabilities," Finance Research Letters, Elsevier, vol. 5(2), pages 79-87, June.
  12. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
  13. Eckhard Platen, 2001. "A Minimal Financial Market Model," Research Paper Series 48, Quantitative Finance Research Centre, University of Technology, Sydney.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:229. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.