IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/242.html
   My bibliography  Save this paper

Alternative Defaultable Term Structure Models

Author

Abstract

The objective of this paper is to consider defaultable term structure models in a general setting beyond standard risk-neutral models. Using as numeraire the growth optimal portfolio, defaultable interest rate derivatives are priced under the real-world probability measure. Therefore, the existence of an equivalent risk-neutral probability measure is not required. In particular, the real-world dynamics of the instantaneous defaultable forward rates under a jump-diffusion extension of a HJM type framework are derived. Thus, by establishing a modelling framework fully under the real-world probability measure, the challenge of reconciling real-world and risk-neutral probabilities of default is deliberately avoided, which provides significant extra modelling freedom. In addition, for certain volatility specifications, finite dimensional Markovian defaultable term structure models are derived. The paper also demonstrates an alternative defaultable term structure model. It provides tractable expressions for the prices of defaultable derivatives under the assumption of independence between the discounted growth optimal portfolio and the default-adjusted short rate. These expressions are then used in a more general model as control variates for Monte Carlo simulations of credit derivatives.

Suggested Citation

  • Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlogl, 2009. "Alternative Defaultable Term Structure Models," Research Paper Series 242, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:242
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-02/QFR-rp242.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151.
    2. Eckhard Platen, 2001. "Arbitrage in Continuous Complete Markets," Research Paper Series 72, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Morten Christensen & Eckhard Platen, 2004. "A General Benchmark Model for Stochastic Jump Sizes," Research Paper Series 139, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    5. Carl Chiarella & Christina Nikitopoulos Sklibosios & Erik Schlögl, 2007. "A Markovian Defaultable Term Structure Model With State Dependent Volatilities," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 155-202.
    6. Platen, Eckhard, 2000. "A minimal financial market model," SFB 373 Discussion Papers 2000,91, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239.
    8. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    9. R. J. Elliott & M. Jeanblanc & M. Yor, 2000. "On Models of Default Risk," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 179-195.
    10. David Heath & Eckhard Platen, 2002. "A variance reduction technique based on integral representations," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 362-369.
    11. Philipp J. Schonbucher, 1997. "Team Structure Modelling of Defaultable Bonds," FMG Discussion Papers dp272, Financial Markets Group.
    12. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen, 2007. "Pricing under the Real-World Probability Measure for Jump-Diffusion Term Structure Models," Research Paper Series 198, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    14. Eckhard Platen & Renata Rendek, 2009. "Exact Scenario Simulation for Selected Multi-dimensional Stochastic Processes," Research Paper Series 259, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Claudio Albanese & Oliver Chen, 2005. "Discrete credit barrier models," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 247-256.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    defaultable forward rates; jump-diffusion processes; growth optimal portfolio; real-world pricing;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:242. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.