IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/139.html
   My bibliography  Save this paper

A General Benchmark Model for Stochastic Jump Sizes

Author

Abstract

This paper extends the benchmark framework of Platen (2002) by introducing a sequence of incomplete markets, having uncertainty driven by a Wiener process and a marked point process. By introducing an idealized market, in which all relevant economical variables are observed, but may not all be traded, a generalized growth optimal portfolio (GOP) is obtained and calculated explicitly. The problem of determining the GOP is solved in a general setting which extends existing treatments and provides a clear link to the market prices of risk. The connection between traded securities, arbitrage and market incompleteness is analyzed. This provides a framework for analyzing the degree of incompleteness associated with jump processes, a problem well-known from insurance and credit risk modeling. By staying under the empirical measure, the resulting benchmark model has potential advantages for various applications in finance and insurance.

Suggested Citation

  • Morten Christensen & Eckhard Platen, 2004. "A General Benchmark Model for Stochastic Jump Sizes," Research Paper Series 139, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:139
    as

    Download full text from publisher

    File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp139.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bardhan, Indrajit & Chao, Xiuli, 1996. "On martingale measures when asset returns have unpredictable jumps," Stochastic Processes and their Applications, Elsevier, vol. 63(1), pages 35-54, October.
    2. Eckhard Platen, 2004. "A Benchmark Framework for Risk Management," World Scientific Book Chapters,in: Stochastic Processes And Applications To Mathematical Finance, chapter 15, pages 305-335 World Scientific Publishing Co. Pte. Ltd..
    3. Eckhard Platen, 2001. "Arbitrage in Continuous Complete Markets," Research Paper Series 72, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Hans Buhlmann & Eckhard Platen, 2002. "A Discrete Time Benchmark Approach for Finance and Insurance," Research Paper Series 74, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Y.M. Kabanov & D.O. Kramkov, 1998. "Asymptotic arbitrage in large financial markets," Finance and Stochastics, Springer, vol. 2(2), pages 143-172.
    6. Robert Jarrow & Dilip B. Madan, 1999. "Hedging contingent claims on semimartingales," Finance and Stochastics, Springer, vol. 3(1), pages 111-134.
    7. repec:wsi:ijtafx:v:07:y:2004:i:04:n:s0219024904002499 is not listed on IDEAS
    8. Dirk Becherer, 2001. "The numeraire portfolio for unbounded semimartingales," Finance and Stochastics, Springer, vol. 5(3), pages 327-341.
    9. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239.
    10. Bühlmann, Hans & Platen, Eckhard, 2003. "A Discrete Time Benchmark Approach for Insurance and Finance," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 33(02), pages 153-172, November.
    11. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    12. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    13. Eckhard Platen, 2004. "Modeling The Volatility And Expected Value Of A Diversified World Index," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 511-529.
    14. Schweizer, Martin, 1992. "Martingale densities for general asset prices," Journal of Mathematical Economics, Elsevier, vol. 21(4), pages 363-378.
    15. Long, John Jr., 1990. "The numeraire portfolio," Journal of Financial Economics, Elsevier, vol. 26(1), pages 29-69, July.
    16. Aase, Knut K., 1988. "Contingent claims valuation when the security price is a combination of an Ito process and a random point process," Stochastic Processes and their Applications, Elsevier, vol. 28(2), pages 185-220, June.
    17. I. Bajeux-Besnainou & R. Portait, 1997. "The numeraire portfolio: a new perspective on financial theory," The European Journal of Finance, Taylor & Francis Journals, vol. 3(4), pages 291-309.
    18. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    19. Aase, Knut Kristian, 1984. "Optimum portfolio diversification in a general continuous-time model," Stochastic Processes and their Applications, Elsevier, vol. 18(1), pages 81-98, September.
    20. Back, Kerry, 1991. "Asset pricing for general processes," Journal of Mathematical Economics, Elsevier, vol. 20(4), pages 371-395.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen, 2010. "Real-world jump-diffusion term structure models," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 23-37.
    2. Eckhard Platen & Stefan Tappe, 2011. "Affine Realizations for Levy Driven Interest Rate Models with Real-World Forward Rate Dynamics," Research Paper Series 289, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Ceci, Claudia & Colaneri, Katia & Cretarola, Alessandra, 2014. "A benchmark approach to risk-minimization under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 129-146.
    4. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    5. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19.
    6. Eckhard Platen, 2004. "Capital Asset Pricing for Markets with Intensity Based Jumps," Research Paper Series 143, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Morten Mosegaard Christensen & Eckhard Platen, 2007. "Sharpe Ratio Maximization And Expected Utility When Asset Prices Have Jumps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(08), pages 1339-1364.
    8. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen, 2007. "Pricing under the Real-World Probability Measure for Jump-Diffusion Term Structure Models," Research Paper Series 198, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. David R. Banos & Giulia Di Nunno & Frank Proske, 2013. "Sensitivity analysis in a market with memory," Papers 1312.5116, arXiv.org, revised Jan 2017.
    10. Jacopo Mancin & Wolfgang J. Runggaldier, 2015. "On the Existence of Martingale Measures in Jump Diffusion Market Models," Papers 1511.08349, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:139. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.