IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Optimum portfolio diversification in a general continuous-time model

Listed author(s):
  • Aase, Knut Kristian

The problem of determining optimal portfolio rules is considered. Prices are allowed to be stochastic processes of a fairly general nature, expressible as stochastic integrals with respect to semimartingales. The set of stochastic differential equations assumed to describe the price behaviour still allows us to handle both the associated control problems and those of statistical inference. The greater generality this approach offers compared to earlier treatments allows for a more realistic fit to real price data. with the obvious implications this has for the applicability of the theory. The additional problem of including consumption is also considered in some generality. The associated Bellman equation has been solved in certain particular situations for illustration. Problems with possible reserve funds, borrowing and shortselling might be handled in the present framework. The problem of statistical inference concerning the parameters in the semimartingale price processes will be treated elsewhere.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Stochastic Processes and their Applications.

Volume (Year): 18 (1984)
Issue (Month): 1 (September)
Pages: 81-98

in new window

Handle: RePEc:eee:spapps:v:18:y:1984:i:1:p:81-98
Contact details of provider: Web page:

Order Information: Postal: http://

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:18:y:1984:i:1:p:81-98. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.