IDEAS home Printed from
   My bibliography  Save this article

Euler scheme and tempered distributions


  • Guyon, Julien


Given a smooth -valued diffusion starting at point x, we study how fast the Euler scheme with time step 1/n converges in law to the random variable . To be precise, we look for the class of test functions f for which the approximate expectation converges with speed 1/n to . When f is smooth with polynomially growing derivatives or, under a uniform hypoellipticity condition for X, when f is only measurable and bounded, it is known that there exists a constant C1f(x) such that If X is uniformly elliptic, we expand this result to the case when f is a tempered distribution. In such a case, (resp. ) has to be understood as (resp. ) where p(t,x,[dot operator]) (resp. pn(t,x,[dot operator])) is the density of (resp. ). In particular, (1) is valid when f is a measurable function with polynomial growth, a Dirac mass or any derivative of a Dirac mass. We even show that (1) remains valid when f is a measurable function with exponential growth. Actually our results are symmetric in the two space variables x and y of the transition density and we prove that for a function and an O(1/n2) remainder rn which are shown to have gaussian tails and whose dependence on t is made precise. We give applications to option pricing and hedging, proving numerical convergence rates for prices, deltas and gammas.

Suggested Citation

  • Guyon, Julien, 2006. "Euler scheme and tempered distributions," Stochastic Processes and their Applications, Elsevier, vol. 116(6), pages 877-904, June.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:6:p:877-904

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Konakov Valentin & Mammen Enno, 2002. "Edgeworth type expansions for Euler schemes for stochastic differential equations," Monte Carlo Methods and Applications, De Gruyter, vol. 8(3), pages 271-286, December.
    2. Arturo Kohatsu & Roger Pettersson, 2002. "Variance reduction methods for simulation of densities on Wiener space," Economics Working Papers 597, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Aurélien Alfonsi & Benjamin Jourdain & Arturo Kohatsu-Higa, 2014. "Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme," Post-Print hal-00727430, HAL.
    2. Pagès Gilles, 2007. "Multi-step Richardson-Romberg Extrapolation: Remarks on Variance Control and Complexity," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 37-70, April.
    3. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    4. repec:bpj:mcmeap:v:23:y:2017:i:2:p:71-88:n:2 is not listed on IDEAS
    5. repec:hal:wpaper:hal-00727430 is not listed on IDEAS
    6. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1.
    7. Rainer Avikainen, 2009. "On irregular functionals of SDEs and the Euler scheme," Finance and Stochastics, Springer, vol. 13(3), pages 381-401, September.
    8. Nicola Bruti-Liberati & Eckhard Platen, 2007. "Approximation of jump diffusions in finance and economics," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 283-312, May.
    9. repec:bpj:mcmeap:v:23:y:2017:i:1:p:1-12:n:1 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:6:p:877-904. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.