IDEAS home Printed from
   My bibliography  Save this article

Approximation of quantiles of components of diffusion processes


  • Talay, Denis
  • Zheng, Ziyu


In this paper we study the convergence rate of the numerical approximation of the quantiles of the marginal laws of (Xt), where (Xt) is a diffusion process, when one uses a Monte Carlo method combined with the Euler discretization scheme. Our convergence rate estimates are obtained under two sets of hypotheses: either (Xt) is uniformly hypoelliptic (in the sense of condition (UH) below), or the inverse of the Malliavin covariance of the marginal law under consideration satisfies condition (M) below. In order to deduce the required numerical parameters from our error estimates in view of a prescribed accuracy, one needs to get an as accurate as possible lower bound estimate for the density of the marginal law under consideration. This usually is a very hard task. Nevertheless, in our Section 3 of this paper, we treat a case coming from a financial application.

Suggested Citation

  • Talay, Denis & Zheng, Ziyu, 2004. "Approximation of quantiles of components of diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 23-46, January.
  • Handle: RePEc:eee:spapps:v:109:y:2004:i:1:p:23-46

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Denis Talay & Ziyu Zheng, 2003. "Quantiles of the Euler Scheme for Diffusion Processes and Financial Applications," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 187-199.
    2. Arturo Kohatsu & Roger Pettersson, 2002. "Variance reduction methods for simulation of densities on Wiener space," Economics Working Papers 597, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Frikha, N. & Huang, L., 2015. "A multi-step Richardson–Romberg extrapolation method for stochastic approximation," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4066-4101.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:109:y:2004:i:1:p:23-46. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.